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Abstract 

This public technical report constitutes the deliverable D3.3 of ARCADIAN-IoT, a Horizon2020 
project with the grant agreement number 101020259, under the topic SU-DS02-2020. D3.3 is 
the third and final submission of a series deliverables to detail the findings, achievements, and 
outcomes resulted from WP3 research activity. The deliverable builds on the previous submission 
D3.2 to include the final results of WP3.  

WP3 is dedicated to the technological development of the components in the Horizontal Planes 
of ARCADIAN-IoT framework for each use case defined in Task 2.1 (Use cases specification and 
planning) and before being integrated in WP5. WP3 is organized in five main tasks (from Task 
3.1 to 3.5), each of which focusing on the definition and development of one or more components 
in the Horizontal Planes. 

Keywords: ARCADIAN-IoT, Privacy preservation, Intrusion detection, Intrusion prevention, Self-
healing, Self-protection, Hardened Encryption, Permissioned Blockchain, Cyber Threat 
Intelligence. 
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EXECUTIVE SUMMARY 

ARCADIAN-IoT Deliverable 3.3 is the final WP3 technical report presenting the complete research 
findings and outcomes of activities performed for each component within the Horizontal Planes of 
the ARCADIAN-IoT framework (comprising Privacy, Security, and Common planes). This 
deliverable is an update to the previous Deliverable 3.2, which presented the interim results 
focused on the 1st prototype (P1). D3.3 stands as self-contained document, providing a 
comprehensive report on the development of each WP3 Horizontal Plane component, without the 
need to refer to previous deliverables. Each component is presented in a standardized format: 
the presentation starts with an overview and a recall of the corresponding objectives and target 
Key Performance Indicators (KPIs), followed by a description of the technology research, 
encompassing the research findings and produced outcomes. Additionally, design specifications 
are given, helping to understand the (internal) technical details of each component, as well as the 
interfaces with other components and organizations making use of ARCADIAN-IoT framework. 
Finally, the results of evaluations along with plans for future work beyond the project’s completion 
are described for each component. 

The work performed in WP3, and described in this document, is organized in five main tasks (from 
Task 3.1 to 3.5), each of which focuses on the definition and development of one or more 
components in the Horizontal Planes. Task 3.1 aims at creating an efficient Permissioned 
Blockchain based on the open-source alternative Hyperledger Fabric, that will in turn support 
other ARCADIAN-IoT components such as Decentralized Identifiers and Reputation components. 
Task 3.2 focuses on the development of Hardened Encryption mechanisms to protect and 
authenticate private data in IoT devices. Task 3.3 is devoted to creating privacy preserving 
technologies: (i) a dependable and privacy preserving classifier based on Federated AI 
algorithms which will also guarantee the source and data integrity, and (ii) a Self-aware Data 
Privacy component that will enhance the way data privacy is managed in IoT contexts. A novel 
IoT-specific Cyber Threat Intelligence system based on the MISP (Malware Information Sharing 
Platform) toolset which will provide privacy preserving data sharing capability and IoT-specific 
Indicators of Compromises is being developed in Task 3.4. Finally, Task 3.5 aims to define and 
implement the monitoring and recovering functionalities which will be provided by the following 
components: (i) a Network flow monitoring agent, enhancement of existing Network Intrusion 
Detection Systems able to detect  known malicious Distributed Denial of Service (DDoS) along 
the entire IoT infrastructure, (ii) a Device Behaviour Monitoring component able to detect 
anomalous behaviours that occurs on IoT devices, (iii) a Network Self-healing, (iv) IoT Network 
Self-protection, and (v) IoT Device Self-protection capabilities to mitigate and recover from 
cyberattacks against IoT networks. 
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OPA Open Policy Agent 

OS Operating System 

OVS OpenVSwitch 

PAP Policy Administration Point 

PCA Protection Control Agent 

PD Protection Decider 

PDP Policy Decision Point 

PEP Policy Enforcement Point 

PoA Proof of Authority 

PPP Public Private Partnership 

REST Representational State Transfer 

RIA Resource Inventory Agent 

RoT Root of Trust 

RPC Remote Procedure Call 

SADP Self-Aware Data Privacy 

SDN Software Defined Network 

SFMA Security Flow Monitoring Agent 

SHA Secure Hash Algorithm 

SHDM Self-Healing Decision Manager 

SIDS Signature IDS 

SIM Subscriber Identity Module 

SMOTE Synthetic Minority Oversampling Technique 

SP Service Provider 
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SSH Secure Shell 

SSI Self-Sovereign Identity 

STIX Structured Threat Information eXpression 

SVM Support Vector Machine 

TAXII Trusted Automated eXchange of Intelligence Information 

TCP Transmission Control Protocol 

TEID Tunnel Endpoint Identification 

TLS Transport Layer Security 

TPR True Positive Rate 

UDP User Datagram Protocol 

UICC Universal Integrated Circuit Card 

URL  Uniform Resource Locator 

VISP Virtualisation Infrastructure Service Provider 

VLAN Virtual Local Area Network 

VxLAN Virtual Extensible Local Area Network 

WAC Web Access Control 

WP Work Package 

XDP eXpress Data Path 

XML eXtensible Markup Language 
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1 INTRODUCTION 

1.1 ARCADIAN-IoT and its Horizontal Planes 

The ARCADIAN-IoT project aims to develop a cyber security framework relying on a novel 
approach to manage and coordinate, in an integrated way, identity, trust, privacy, security, and 
recovery in IoT systems. The proposed approach organizes the multiple cyber security 
functionalities offered by the framework into several planes combined in an optimized way to 
support the end-to-end services. In particular, the framework includes three Vertical Planes 
devoted to identity, trust, and recovery management, and three Horizontal Planes supporting the 
Vertical Planes by managing privacy of data, monitoring security of entities, and providing 
Permissioned Blockchain and Hardened Encryption technologies (see Figure 1). 

 

Figure 1 - ARCADIAN-IoT Conceptual representation highlighting Horizontal Planes 

The Horizontal Planes of the ARCADIAN-IoT framework (consisting of ten main components) are 
organized as follows:  

• The Privacy Plane, which aims to provide functionalities for the privacy-preserving 
management of confidential or sensitive data involving persons’ entities, includes the (i) 
Self-aware Data Privacy and (ii) Federated Artificial Intelligence (Federated AI) 
components. 

• The Security Plane contains all the cyber security features required for the monitoring, 
prevention, management, and recovery; it comprises the (i) Network Flow Monitoring, (ii) 
Behaviour Monitoring, (iii) Cyber Threat Intelligence, (iv) Network Self-protection, (v) IoT 
Device Self-protection, and (vi) Network Self-healing components. 

• The Common Plane includes the two components that provide common functionalities to 
the Vertical Planes, i.e., (i) the Hardened Encryption1 and (ii) Permissioned Blockchain. 

 

Table 1 shows how the components in the Horizontal Planes are grouped per plane and in which 
task of the project are developed. 

 

 

1 Hardened Encryption comes in 2 variants: a) SIM as RoT b) cryptochip as RoT 
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Plane Component Task 

Privacy Plane Self-aware Data Privacy 3.3 

Federated AI 3.3 

Security Plane Network Flow Monitoring 3.5 

Behaviour Monitoring 3.5 

Cyber Threat Intelligence 3.4 

Network Self-protection 3.5 

IoT Device Self-protection 3.5 

Network Self-healing 3.5 

Common Plane Hardened Encryption1 3.2 

Permissioned Blockchain 3.1 

Table 1 - Mapping the components to WP tasks. 

This deliverable is organized in three main sections mapping the three Horizontal Planes. Every 
section is split into multiple subsections, each of which describing the research findings for a 
specific component in the plane. The description of a component reports:  

1. An overview of the developed component, together with a recall of related requirements, 
objectives, and Key Performance Indicators (KPIs). 

2. A report of the technology research activities: giving an overview of the technology used, 
summarizing the research findings, achievements and describing the produced resources, 
including the references to the source code that is shared by the partners, whenever 
possible. 

3. The design specification of the component, detailing the logical architecture, interfaces to 
other components, APIs for using the component, and other technical details. 

4. The evaluation results of the component. 
5. The plan for future work beyond the project’s completion. 

 

This deliverable supersedes all previous WP3 deliverables and serves as a self-contained 
deliverable describing the research, design and overall results for each of the ARCADIAN-IoT 
components within the Horizontal Planes. 

1.2 Objectives 

WP3 aims at contributing to the achievements of six main objectives in the ARCADIAN-IoT 
project, defined in the ARCADIAN-IoT grant agreement. Each objective comes with individual Key 
Performance Indicators (KPIs), also defined in the grant agreement. Besides these initial KPIs, 
the component-specific KPIs have been revised to provide accurate and measurable indicators 
of the success of the project. The summary of the project’s objectives and WP3’s contribution to 
the associated KPIs are listed here, along with additional details of the WP3 components.    

• To create a decentralized framework for IoT systems - ARCADIAN-IoT framework 
and enable distributed security and trust in management of persons’ identification. 

o Use the permissioned blockchain to publish trusted information to third parties in 
the ARCADIAN-IoT framework. 

o Deployment of permissioned blockchain in IoT environments. 

o Train partners to deploy a blockchain network 

• Provide distributed and autonomous models for trust, security, and privacy – 
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enablers of a Chain of Trust.  

o Improve communication efficiency in federated learning. 

o Improve robustness in federated learning against model and data poisoning 
attacks. 

o Provide a new data rebalancing technique for federated learning setting 
outperforming state-of-the-art methods (K-SMOTE, SMOTE, up/down-sampling) 
in term of accuracy and efficiency. 

o Continuous training of IDS models in IoT devices. 

o Ability to process different input types with non-root privileges (e.g., syscalls, auth, 
rep). 

o Deployment in heterogenous devices. 

• Provide a Hardened Encryption with recovery ability.  

o Encryption library enabling fine-grained access control over data with APIs in at 
least 4 programming languages and demonstrate its use on at least 2 types of 
devices/platforms. 

o Add Root of Trust information to encrypted data with xSIM 2 -based digital 
signatures. 

o Provide secure and scalable key management and delegation synchronized with 
the decentralized identity management, multi-factor authentication and self-
recovery. 

o Provide efficient implementation of the process with encryption times comparable 
to the state-of-the-art results on multiple devices, and with RoT signatures in 
acceptable time for the communication processes. 

o Provide secure and scalable key management, in both device & middleware sides, 
covering all operations lifecycle situations (creation, fulfilment, regular data 
communications, removal, recovery) for devices fleets. 

o Provide efficient implementation of the process at a device and the middleware 
side in acceptable time for the communication (telecommunication protocols and 
upper layer OSI protocols wise) processes. 

• Self and coordinated healing with reduced human intervention.  

o Provide new alert metadata information about IoT and 5G flow structure, within the 
supported network segments with a number of >= 4 (Edge, Core, RAN and 
Transport). 

o Provide transversal detection capabilities to protect, simultaneously tenant 
infrastructure and the infrastructure provider by supporting >=4 encapsulations 
and tunnelling protocols widely used in overlay networks inherent to 4G/5G IoT 
mobile infrastructures such as VXLAN, GRE, GENEVE and GTP.   

o Novel traffic classifier able to deal with data paths in 4G/5G IoT networks (overlay 
traffic with several levels of nested encapsulation). 

o OpenFlow protocol extension to provide a flexible and extended programmability 
of the data plane. 

o OVS Netlink API extension for inter-process communication kernel-user space. 

 

 

2 xSIM stands for any form of Subscriber Identity Modules, like SIM, eSIM or iSIM 
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o Policy enforcement based on ensemble of risk levels, indicators of compromise, 
reputation and threat information. 

o Autonomous self-protection mechanism for heterogeneous operating systems and 
devices. 

o Provide self-healing for overlay networks and IoT networks supporting >= 4 
encapsulation and tunnelling protocols widely used in overlay networks inherent to 
4G/5G IoT mobile infrastructures such as VXLAN, GRE, GENEVE or GTP.   

o Provide dynamic and distributed enforcing of protection/healing policies in 7 or 
more network segments (Edge, Core, RAN, Transport, Backbone, Enterprise, 
Backhaul, Midhaul) in 20 seconds or less for up to 4096 IoT devices sending a 
combined bandwidth of 10 Gbps of malicious traffic; or 2048 IoT devices sending 
a combined bandwidth of 25 Gbps of malicious traffic. 

o Provide network topology understanding to reduce human intervention (towards 
0% of human intervention) supporting the coordination of recovery to pre-defined 
trust levels (>= 95% of flow services prior to anomalous behaviour) using such 
topology. 

• Enable proactive information sharing for trustable Cyber Threat Intelligence and IoT 
Security Observatory.  

o Enable the aggregation and processing of IoCs generated by internal or external 
sources. 

o Provide ML models for automated IoC clustering. 

o Provide ML models for automated IoC ranking. 

o Provide ML models for automated Event/Galaxy classification. 

 

1.3 Component description methodology 

The work associated to each ARCADIAN-IoT component is described in the upcoming sections 
according to the following structure: 

- First, the Overview provides the overall research and development scope associated to 
the component, including requirements, innovation-driven objectives and associated 
KPIs. 

- The Technology Research spans both background relevant to the work performed in 
ARCADIAN-IoT (e.g. prior related solutions or knowledge), key research findings and 
achievements attained during the project, as well as resources produced as outcomes 
from the research and development work (e.g. datasets or software code). 

- Design specification describes the component from a software design perspective, 
presenting relevant specifications such as logical or deployment architectures, internal 
and external interfaces, or other technical specifications specific to the scope of the 
research area. 

- In Evaluation and results, performed experiments and associated evaluation results 
are described. 

- Finally, in Future Work, the research and improvement opportunities identified as a 
result of ARCADIAN-IoT work are presented. 
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2 PRIVACY PLANE 

2.1 Self-aware Data Privacy 

2.1.1 Overview 

2.1.1.1  Description 

Within the scope of the ARCADIAN-IoT project, Martel developed a component to empower the 
users to better control privacy of their data, in particular by allowing the definition of user- defined 
privacy policies for data, and by suggesting policies specified on similar data. The Self-Aware 
Data Privacy (SADP) component includes two main modules: a policy management module which 
enforces data privacy via the definition of privacy policies – in the context of this component, 
policies relate specifically to attributed-based data encryption and/or anonymization -, and a 
recommender module which, by assessing policy similarity, suggests privacy policies. The policy 
management module leverages a background of Martel to ensure that privacy policies and data 
access are consistent. 

2.1.1.2  Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 is given below. 

Requirement 2.1.1 – User defined policies: An authorized user can access the system and specify 
for a given data source or data property the security policies that allows to protect the data either 
when entering into the system or exiting – or both. 

Requirement 2.1.2 – Policies validation: Security policies can be specified in a machine-readable 
format (e.g., JSON) and validated against a schema interpreter to assess their validity and 
applicability. 

Requirement 2.1.3 – Data secured: Data sources or data attribute scan be secured by a given 
methodology: anonymisation, pseudo-anonymisation, encryption, and advanced encryption 
(hardened) based on attribute-based encryption. 

Requirement 2.1.4 – Recommender: The system is able to recognise similarity between new data 
and existing data by key, attributes and/or semantic; This result is eventually displayed to users 
for facilitating the issuing of security policies. 

2.1.1.3  Objectives and KPIs 

The main objective of the component is to empower users to better control privacy over their data, 
in particular by allowing the definition of user-defined privacy policies for specific attributes and 
by suggesting policies specified on similar data. The following KPIs allowed to verify the 
achievement of these objectives. 

KPI scope  

 Making sure the protection algorithm is flexible and can adapt to different needs 

Measurable Indicator 

 Number of policies handled by the protection algorithm 

Target value Achieved value 

5 encryption/anonymisation kind of policies 
handled 

1 anonymisation policy implemented directly, 1 
encryption algorithm supported via the 
Integration with Hardened Encryption, 10+ 
more algorithm schemes supported by the 
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integrated library3 

 

KPI scope  

Verify that the recommender system can retrieve similar policies and evaluate its effectiveness 

Measurable Indicator 

Precision/recall combined in the F1 score for the recommender algorithms 

Target value Achieved value 

≥80% Approx. 81.3% 

 

KPI scope  

Making sure the component is usable and can simplify the issuing of policies by the users 

Measurable Indicator 

Usability of the policing issuer (Likert scale). 

Target value Achieved value 

90% Positive Feedback  80% Positive Feedback (lessons learned: the 
interface implementation and testing required 
more effort than foreseen) 

2.1.2 Technology research 

2.1.2.1 Background 

The investigation conducted within the framework of the project had an applicative focus on state-
of-the-art algorithms for the efficient implementation of policy management and enforcement. 

The Self-aware data privacy component leverages two state-of-the-art tools: 

Open Policy Agent (OPA4), an open-source, general-purpose policy engine which decouples 
policy decision-making from policy enforcement, generating policy decisions by evaluating a 
query input (can be any structured data, e.g., JSON) against policies and data. 

Envoy Proxy 5 , an open-source edge and service proxy designed for single services and 
applications, as well as a communication bus and “universal data plane” designed for large 
microservice “service mesh” architectures. 

In addition to those tools, in the Recommender component we leverage NLTK 6  to assess 
similarity between attributes of data objects. 

 

2.1.2.2 Research findings and achievements 

The two background tools were combined and concatenated in two sub-modules: Anubis and 
Amon which together constitute the policy management module of the Self-aware data privacy. 
The two sub-components are enriched with a third one: the Recommender sub-component. 
These three constitute the main achievement for Self-aware Data Privacy within WP3 and within 
the framework of the project. 

 

 

3 https://github.com/fentec-project/gofe  
4 https://www.openpolicyagent.org  
5 https://www.envoyproxy.io/docs/envoy/latest  
6 https://www.nltk.org/  

https://github.com/fentec-project/gofe
https://www.openpolicyagent.org/
https://www.envoyproxy.io/docs/envoy/latest
https://www.nltk.org/
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Anubis7 is a flexible policy enforcement solution that makes easier to reuse security (access) 
policies across different services entailing the same data. It is background developed by Martel 
within the Cascade Funding mechanisms of the EC project DAPSI (GA871498) and adapted in 
ARCADIAN-IoT to provide access polices for Amon, which is one of the main project’s foreground 
and allows to: 1) define anonymization and encryption policies for data and 2) apply encryption 
(and decryption policies) on data. 

The other major project foreground is the Recommender implementation with its GUI, which make 
easier to specify protection policies, even for non-technical users. 

2.1.2.3 Produced resources 

In Figure 2 we recall the logical architecture initially included in D3.1 and provide an update of the 
status of the implementation, with reference to the technologies and components presented in 
the previous sections. 

All bullets 1 to 5 are now completed, including the finalisation of the Amon sub-module (4) and 
the recommender system and GUI implementation, which were pending in the previous release 
of this deliverable (D3.2). 

(1) Within ARCADIAN-IoT, one of the first activities was to adapt the Access Management sub-
modules (Anubis) to serve the purpose of the Self-aware data privacy. 

We then implemented Amon as follow: 

(2) A Policy Decision Point (PDP) Based on the open source, general-purpose policy engine Open 
Policy Agent (OPA), allowing the decoupling between decision-making vs. policy enforcement vs. 
user access (Anubis).  

(3) Policy Administration Point (PAP), a custom API (Open-source) to implement the “Policy 
Description” component follow the Data Model originally defined for user, data, access and 
security algorithm. 

The (4) Policy Enforcement Point (PEP) is the combination of the API developed as PAP (2) and 
the Envoy plugin of OPA and will allow to anonymize/encrypt the data, eventually leveraging the 
encryption/decryption (Go) Libraries or API provided by XLAB 

Finally, the (5) Recommender design and implementation as well as the GUI one, for specifying 
encryption/anonymization policies. The GUI leveraged and extended the one already defined for 
Anubis and illustrated below, to connect with Amon as well. 

The 3 sub-components are available in the respective repositories8 as indicated here below: 

1. Anubis: https://github.com/orchestracities/anubis 
2. Amon: https://github.com/orchestracities/amon 
3. Recommender: https://github.com/orchestracities/recommender-ui 

 

 

7 https://github.com/orchestracities/anubis  
8 Amon and Recommender are not yet publicly accessible. Explicit access request can be addressed to 
Martel (lab@martel-innovate.com) 

https://github.com/orchestracities/anubis
https://github.com/orchestracities/amon
https://github.com/orchestracities/recommender-ui
https://github.com/orchestracities/anubis
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Figure 2 - Logical architecture for the Self-Aware Data Privacy component 

 

2.1.3 Design specification 

In Figure 3 we illustrated the two sub-modules Anubis and Amon in relation with the logical 
architecture presented above and provide a better inside on the interaction of the different 
components. This is described in the next sections into more details. 

 

Figure 3 - Self-Aware Data Privacy logical architecture 

2.1.3.1 Logical architecture view 

We first provide a first overview of the Anubis component, then describe Amon and their mutual 
interaction. 

In term of policy enforcement, Anubis adopts a standard architecture: a client request for a 
resource to an API, and based on the defined policies, the client is able or not to access the 
resource. Figure 4 shows the current architecture. 
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Figure 4 - Anubis logical architecture 

 

Anubis currently supports only Role Based Access Control policies. Policies are stored in the 
policy management API, that supports the translation to Web Access Control (WAC) policies and 
to a data input format supported by OPA, the engine that performs the policy evaluation. 

At the time being, the API specific rules have been developed specifically for the NGSIv2 Context 
Broker9, Anubis management, and JWT-based authentication. In addition to that, thanks to the 
libp2p middleware10 , polices can also be distributed across different Policies Administration 
Points. The architecture decouples the PAP from the distribution middleware as in the picture 
above. 

On the other hand, Amon aims to be a data protection policy enforcement middleware, i.e. it 
allows to define anonymization and encryption policies for data on the one side and on the other 
to apply encryption (and decryption policies) on data. Amon complements Anubis, that retains 
control over access to data (and access to decrypted data). The three main properties of Amon 
are: 1) Define policies for data anonymisation and encryption 2) Decouple the policies from the 
application of the encryption and anonymisation techniques 3) Is Attribute based. 

In term of data protection policy enforcement, Amon leverages a similar architecture to Anubis: a 
client request for a resource to an API, and based on the defined policies, the client receives back 
the resource with part of the data protected (e.g. encrypted) or not. Figure 5 shows Amon’s logic 
architecture. 

 

 

9 https://fiware-orion.readthedocs.io/en/master/ 
10 https://libp2p.io/ 
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Figure 5 - Amon logical architecture 

 

In Figure 6 we illustrate the joint action Anubis-Amon, in particular by the PEP which is able to 
concatenate the chain of authorization first for access (Anubis), then for data protection (Amon). 

 

Figure 6 - Logical view of the combined action of Anubis and Amon 

A client requests for a resource via the PEP - implemented using an Envoy's proxy authz filter. 

The PEP pass over the request to the PDP, while for the access to the data, the PDP is provided 
by Anubis, in Amon a dedicated engine provides enforcement of data protection policies (i.e. 
encrypt/anonymize attributes of data resources at rest or in transit); 

The enforcement of data protection policies takes place according to the policies stored in the 
PAP, provided by the Data Protection Policy Management API; 

Based on the access control and data protection policies, the client receives back the requested 
resource where data are encrypted/anonymised as by policy. 

 

2.1.3.2 Interface description 

Table 2 details the external interfaces: 

Partner Definition Channel Exchange 

Protected APIPolicy Enforcement Point
Request + JWT token

Includes user id, 

role, groups, 

tenants

PROTECTION

Policy Decision 

Point

AMON
Policy Administrat ion Point

API /  LIbrary

i.e. custom 

anonimisation, 

Hardened Encryption
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XLAB 
Hardened 

Encryption 
Direct Code 
Integration 

Encryption libraries 
integrated inside Amon 

IPN Authentication 
Direct Code 
Integration 

JWT Token respecting 
the OIDC standard 

Table 2 - External interfaces of the SADP component 

2.1.3.3 Technical solution 

We present in the next sections the properties of the policies with an example and summarise 
how the API are structured. 
 

2.1.3.3.1 Policy Format 

The formal data protection policy specification is defined by an oc-acl vocabulary11. The internal 
representation is json-based and illustrated in the next section about the API. 

• resource: The urn of the resource being targeted (e.g. urn:entity:x) 

• resource_type: The type of the resource. 

• attributes: The set of attributes the protection applies to 

• mode: The protection mode applied (in transit, at rest) 

• technique: The protection technique applied (e.g. anonymize, encrypt, …) 

 

In Figure 7 we proved an example of the policy description and its action on a resource of 
example. 

 

Figure 7 - SADP6 Policy example 

 

2.1.3.3.2 API specification 

We report in this section the API specification as available also in the online repository12. 

 

 

11 https://github.com/orchestracities/anubis-vocabulary/blob/master/oc-acl.ttl  
12 https://github.com/orchestracities/amon/tree/master/amon-management-api  

https://github.com/orchestracities/anubis-vocabulary/blob/master/oc-acl.ttl
https://github.com/orchestracities/amon/tree/master/amon-management-api
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The Amon APIs depend on the FIWARE, in particular the policy management part is 
complemented by Tenant and Service management as supported by FIWARE APIs. 

While policies are expressed in a generic way, and therefore it means that policies work also for 
other APIs beyond FIWARE, on the other hand FIWARE introduced a specific way to support 
multi-tenancy, and this API complies with FIWARE multi-tenancy model13. 

A tenant, also named as Fiware-Service, is further segmented into ServicePaths, i.e. hierarchical 
scoping of the resources part of a given tenant. For a more detailed discussion, you can read the 
related discussion in FIWARE Orion Context Broker documentation14. 

The API is composed by these main paths: 

• /v1/tenants supporting definition of tenants (FIWARE Services) and paths (FIWARE 
Service Paths). Inherited from Anubis. NOTE: FIWARE Service Paths may be gone with 
NGSI-LD. 

• /v1/policies supporting definition of data protection policies (linked to tenants and service 
paths). Under the hood, this path also creates and stores information linked to policies: 

o Encryption Modes (i.e. in transit or at rest) 

o Encryption Techniques (i.e. a given type of encryption or anonymization); 

This is the current status of Amon: 

• V0.1 available on GitHub: https://github.com/orchestracities/amon  

• Key features completed: 

o Policy definition 

o OIDC with Keycloak 

Dependences, libraries: 

• W3C WAC 

• W3C ODRL 

• OAUTH2 and OIDC 

Requirements: 

• Python 3.9 

• pipenv 

• A database supported by sqlalchemy 

License:  

• APACHE 2.0. 

 

Example: 

• Starts the API (dev mode) 

$ pipenv install --dev 

$ pipenv shell 

 

 

13 https://fiware-orion.readthedocs.io/en/3.7.0/user/multitenancy.html  
14 https://fiware-orion.readthedocs.io/en/3.7.0/user/multitenancy.html  

https://fiware-orion.readthedocs.io/en/3.7.0/user/multitenancy.html
https://fiware-orion.readthedocs.io/en/3.7.0/user/multitenancy.html
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$ uvicorn amon.main:app --port 8075 --reload 

note: custom logging for some reasons is not working: 

uvicorn amon.main:app --port 8075 --reload --log-config ./logging.yaml --access-log 

 

• Test the API 

$ pytest -rP 

Generate UML diagram for data models 

$ python generate_uml.py 

API documentation 

Once the API is running, you can check it at: http://127.0.0.1:8075/docs  

2.1.3.3.3 Frontend design  

 

The front end for the specification of Amon’s policies has been developed similarly to the one 
developed for Anubis and allows to all users, also non-technical ones, to easily specify polices to 
single attributes (Figure 8). 

 

 

Figure 8 - Example of GUI for per attribute policy and technique enforcement 

 

2.1.4 The recommender 

This section will go over the recommender service developed to work alongside Amon and 
provide recommendations for the policies to apply on the attributes for any given data entity. 

2.1.4.1 The recommendation flow 

At its core the recommender is a HTTP service component which is queried by the Amon frontend 
when a user views the policies applied to a given set of data attributes (Figure 9). For each 
attribute, a policy enforces a technique for encryption/anonymisation. The purpose of the 
recommender is to provide a recommendation for what are the “best” techniques to apply to that 
attribute in the given context. 

http://127.0.0.1:8075/docs
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Figure 9 - Frontend and Recommender flow 

A simple example: we have an attribute called “name”, and the user wants to apply a policy to it. 
The recommender when queried about the attribute “name” and provided the context for that 
attribute (e.g. “medical patient”), will return a list of suggested techniques to enforce with a policy, 
like anonymisation or encryption (Figure 10). 

 

Figure 10 - Frontend view of a policy and the recommended techniques for it 

 

The recommender will return multiple technique suggestions, each given a “score” to give the 
user an immediate idea of what the “best” options are. 

The way the recommender provides these recommendations is based on a specific configuration 
file, which provides “guidelines” for which techniques to apply for a given set of attributes in 
specific domains. From these guidelines, the recommender can derive recommendations for a 
larger set of attributes, using mainly lexical semantical analysis (e.g. two different attributes with 
a similar meaning requiring the same technique). 

The configuration is derived from general “best practice” techniques (encrypting sensitive medical 
data, anonymising names, …), currently manually curated using publicly available databases as 
a reference point (medical database models for instance). The option to automate the 
configuration and use a learning was investigated but could not be implemented within the 
framework of the project and could be explored into more details as future work in other projects. 

2.1.5 Evaluation results 

Amon is currently able to enforce encryption policies by leveraging the Hardened Encryption 



D3.3: Horizontal Planes - final version 

 

© ARCADIAN-IoT Consortium 2021-2024               Page 33 of 167 

library to transform a given set of data attributes in transit. This includes being able to retrieve 
public and private keys to perform the task and applying the correct encryption policy on top of 
the enforcement policies. In addition, Amon can perform data anonymisation on a variety of data 
types (direct implementation), and supports 10+ policies for asymmetric and asymmetric 
encryption, anonymisation and pseudo-anonymisation, and functional encryption, leveraging the 
gofe libraries. 

Regarding the recommender system, in addition to the implementation we have performed a 
baseline evaluation using our current configuration focusing primarily on medical domain 
attributes for patients (e.g. name, age, blood type, blood pressure, …). The evaluation is 
performed on a test set of data attributes, derived from real world medical database models, 
calculating the precision and recall of the recommender and the resulting F1 score (see KPIs). 

Given the current configuration and a test data set of around 90 attributes, we can achieve an F1 
score slightly above 0.8. This meets our previously established goal, but evaluation with larger 
data sets in multiple domains and further tweaking of the configuration would improve the 
accuracy of this test and future ones. 

The user testing to assess the effectiveness of the recommender GUI was performed internally 
and allowed to reach a satisfactory level (80% of users showing positive evaluation), however 
lower than expected (90%). This is due to the need of more improvement cycles which could not 
performed within the framework of the project. 

2.1.6 Future work 

Future work outside the timeframe of WP3 might focus on further improving Anubis and Amon to 
work together, alongside further refinements of the recommender, including the previously 
mentioned approach towards learning models for its configuration and its GUI.  

2.2 Federated AI 

2.2.1 Overview 

2.2.1.1 Description 

Within the scope of the ARCADIAN-IoT project, Research Institutes of Sweden (RISE) has built 
dependable and privacy preserving Federated Learning (FL) capabilities are deployed in machine 
learning (ML)-based components (e.g., CTI and Behaviour Monitoring components). The 
proposed solution provides both source integrity (the guarantee that no malicious participant is 
involved in the process) and data integrity (privacy of raw data and local model updates is 
preserved). In addition, RISE has investigated and proposed solutions for the problem of having 
statistical and systematic heterogeneity of data in IoT environments, which usually determines an 
inaccurate and vulnerable training process. 

Federated AI component has been developed as integrated module within those ARCADIAN-IoT 
components that provide ML models as their functionalities (e.g., CTI and Behaviour Monitoring 
component). It includes two subcomponents: data rebalancer and model resizing and sharing. 
Data rebalancer will provide a way to rebalance and fit non-Independent and Identically 
Distributed (non-IID) data to the framework; Model resizing and sharing subcomponent 
implements a communication-efficient and robust framework for model aggregation while 
preserving source integrity. This subcomponent accelerates and protects the local model from 
being attacked by adversarial attacks from malicious entities. Data integrity is provided by (i) the 
data rebalancer which only shares generated synthetic data and (ii) the model resizing and 
sharing subcomponent which uses standard FL paradigm to share only processed ML models. 
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2.2.1.2 Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 [2] is given below. 

Requirement 2.2.1 – Malicious behaviours from sharing entities to be detected: When an entity 
collaborating in the FL setup misbehaves during the learning process, it should be detected in 
order to invalidate the output. 

Requirement 2.2.2 – Local ML model to be lightweight: The models that are generated locally by 
the CTI should be lightweight, as this will make the FL more efficient in the federated model 
computation. 

Requirement 2.2.3 – At least three heterogeneous devices/entities: The Federated AI 
mechanisms should support the training among at least three heterogeneous devices and 
entities. 

2.2.1.3 Objectives and KPIs 

The main objective is to provide a dependable privacy preserving classifier based on FL which (i) 
incorporates classical data balancing techniques traditionally used for dealing with imbalanced 
date in centralized ML, and (ii) ensures source and data integrity in the learning phase. With the 
aim of fulfilling the project’s objectives, the Federated AI module has been evaluated against the 
following KPIs: 

 

KPI scope  

Provide a new data rebalancing techniques for federated learning setting outperforming 
state-of-the-art methods (K-SMOTE, SMOTE, up/down-sampling) in term of accuracy and 
efficiency 

Measurable Indicator 

False Positive rates (FPR), False Negative rates (FNR), Precision, Recall, number of 
epochs per rebalancing cycle 
 

Benchmarking 

K-SMOTE [12], SMOTE [3,4], Upsampling [1], Downsampling [2] 

Target value Achieved value 

FPR < 5%,  
FNR <5%,  
Precision >99%,  
Recall >95%,  
#epochs per rebalancing cycle: < 50 epochs 

FPR ≃1%,  
FNR ≃2%,  

Precision ≃99%,  
Recall ≃97%,  

#epochs per rebalancing cycle ≃ 30 epochs 

 

KPI scope  

Improve communication efficiency in federated learning 

Measurable Indicator 

AUC and F1-score, and number of epochs required to converge 

Benchmarking 

Random-K Sparsification [6], Top-K Sparsification [5] 

Target value Achieved value 

AUC > 99%, 
F1-score > 94% 
#epochs to converge < 35 epochs 

AUC ≃ 100%, 

F1-score ≃ 96% 
#epochs to converge < 15 epochs  
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KPI scope  

Improve robustness in federated learning against model and data poisoning attacks 

Measurable Indicator 

F1-score and False Negative Rate (computed with data and model poisoning attack) 

Benchmarking 

Federated Average (baseline) [9],  Median, Trimmed-Mean [10], Krum [11] 
 

Target value Achieved value 

F1-score (under data poisoning attack) > 
93%  
FNR (under data poisoning attack) < 12%  
F1-score (under model poisoning attack) > 
85%  
FNR (under model poisoning attack) < 20% 

F1-score (under data poisoning attack) = 
97.63%  
FNR (under data poisoning attack) = 4.27%  
F1-score (under model poisoning attack) = 
93.94%  
FNR (under model poisoning attack) = 9.71% 

 

2.2.2 Technology research 

2.2.2.1 Background 

First, statistical heterogeneity can arise from non-IID data collection in IoT networks, because of 
the FL setups, the number of the data points or data distribution may vary significantly across 
devices or clients, which would degrade the performance of the model. Imbalanced data is a 
common issue in real-world classification tasks. It refers to the problem that one class is heavily 
under-represented compared to the other class, in a two-class classification problem. It affects 
the performance of the classifier since prediction leans towards the majority class, and the minor 
class is usually wrongly classified. This situation is typical for many cyber security applications, 
including anomaly, attack, or fraud detection, where datasets are often quite imbalanced. The 
state-of-the-art data rebalancing techniques include: (i) oversampling [1], (ii) under-sampling [2], 
and (iii) Synthetic Minority Oversampling Technique (SMOTE) [3,4]. Oversampling and under-
sampling are two classic techniques to address this issue. Nonetheless, the application of these 
techniques has not been explored in contexts for FL. 

Second, complete training round of FL includes uploading and downloading between every client 
and the central aggregator. Expensive communication cost is a bottleneck for many FL 
deployments, especially when using large DNNs that contains millions of parameters, that are 
shared during the training process between the clients and the aggregator. Therefore, 
communication overhead is one critical challenge that needs to be addressed. There are several 
state-of-the-art solutions including: (i) model sparsification [5,6], (ii) quantization [7], and (iii) 
parallelization [8]. Among these three methods, we found model sparsification is the most 
promising techniques. The main idea of model sparsification is to only communicate a reduced 
number of components of the model's gradients (or parameters) in order to improve the efficiency, 
but, at the same time, achieving a good estimate of the global gradient so that the performance 
is not significantly affected. Two state-of-the-art sparsification methods: (i) Top-K sparsification 
[5] and (ii) random-K sparsification [6]. Top-K sparsification is to choose top-k parameters with 
the highest absolute value from the gradients and assign the rest of the components as the 
residuals; random-K, literately, is to choose random k numbers of parameters. These two 
methods seem promising, they still hold some shortcoming such as slow convergence.  

Last but not the least, standard aggregation algorithms, such as Federated Average [9], are 
extremely vulnerable to data and model poisoning attacks. Thus, a single adversary can entirely 
compromise the training process. Robust aggregation techniques for FL have become a relevant 
and popular research topic for FL, given the impact that these attacks can have in practical 
deployments. Data poisoning attack refers to the attacker manipulates the training dataset with 
aim to mis-train the classifier; model poisoning attack refers to the attacker manipulates the model 
parameters, or the updates shared with the central aggregator. Several state-of-the-art defence 
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techniques have been proposed: (i) Median and Trimmed-Mean proposed in [10 ] are two 
aggregation algorithms relying on robust statistics, and (ii) Krum [11] considers the similarity of 
the gradients of model updates from all the clients in every iteration. 

2.2.2.2 Research findings and achievements 

During the course of WP3, RISE has conducted research and development activities on two main 
subcomponents: (i) the data rebalancer, which aims at rebalancing non-IID and imbalanced data 
in a federated set-up, and (ii) the model resizing and sharing subcomponent. The research activity 
can be summarized as follow: 

• Studied the issues related to the statistical heterogeneity (non-IID data) within Federated 
AI and IoT network, which usually causes a degradation of training the models. 

• Explored and analysed three state-of-the-art data rebalancing methods. 

• Designed and implemented a new potential solution for data rebalancing. 

• Evaluated the proposed data rebalancing approach with two open source IoT datasets. 

• Explored and analysed state-of-the-art communication-efficient aggregation rules. 

• Explored and analysed state-of-the-art robust aggregation rules.  

• Designed, implemented and evaluated a novel communication-efficient and robust 
aggregation rule for FL. 

 

2.2.2.2.1 Subcomponent: Data Rebalancer 

After understanding the challenges and situations of previous works, RISE has studied and 
developed an adaptive data rebalancing technique, which can be used in peer-to-peer FL, and 
for non-IID data. Starting from the K-SMOTE [12], a variation of the original SMOTE for IoT 
settings, RISE has defined a new technique able to generate more complex synthetic points to 
share some of them with other participating clients. Figure 11 depicts how the proposed Data 
rebalancer subcomponent works. 

 

Figure 11 - Overview of Data rebalancing approach 

Within an IoT network, the Data rebalancer can be deployed on the edge devices, referred to as 
clients in FL setups. The edge device can be, for example, a gateway that includes Behaviour 
Monitoring capabilities in order to detect any malicious activities. In our proposed solution, there 
is no central node required to participate to or orchestrate the training process. Overall, the entire 
process that involves the data balancer consists of three phases: (i) synthetic data generation, (ii) 
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model optimization, and (iii) data and model sharing. In the first phase, the training data available 
at a client are rebalanced by an over-sampling technique (i.e., augmenting the number of data 
points from the minority class) which generates synthetic data points from the genuine data points 
in the minority class. The synthetic data points are randomly split into three subsets (𝐴, 𝐵, and 

𝐶). The synthetic data points in the set (𝐴 ∪ 𝐵)15 are merged with the genuine data points so as 
to obtain a balanced dataset which is fed into the local ML model stored by the client. Then, the 
ML model is trained with the merged balanced dataset. Finally, the resulting model and synthetic 
data points in the set (𝐵 ∪ 𝐶) are shared with a subset of the connected clients. It is important to 
note that the clients are not sharing directly training data points, but a mix of synthetic data points 
which are partially not used for training the local model. 

Again, the cause of non-IID phenomenon is heterogeneity of various IoT devices, and this 
phenomenon degrades the model’s performance in FL. It is bound to sacrifice some privacy to 
solve the problem of non-IID. Instead of having an auxiliary dataset maintained by the central 
node, the algorithm shares only some artificial data between some participants to help their local 
data rebalancing. The challenge is how to preserve the privacy of data when sharing the artificial 
data which is generated based on the raw data. SMOTE, as a state-of-the-art rebalancing method, 
has been used in many imbalanced data problems. It generates synthetic data by linear 
interpolation of samples in the minority class. However, it has the risk that the genuine data points 
are easy to be inferred when synthetic data is shared with other peers. To reduce the risk of 
privacy breaches, RISE defined and developed HSphere-SMOTE, an enhanced version of the 
SMOTE, suitable for FL sessions in IoT scenarios. 

 

Algorithm 1 

Algorithm 1 describes the whole process of HSphere-SMOTE in detail. First, the input to the 
algorithm consists of the dataset that includes labelled data from the minority class, and several 
hyper-parameters including the number of base data to re-sample and the number of synthetic 
points to be created. The output is the final set of synthetic points. HSphere-SMOTE first randomly 

 

 

15 The symbol ∪ is employed to denote the union of two sets. 
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picks 𝑑𝑠𝑎𝑚 base data points (line 1). For each base data point 𝑥𝑖 , the algorithm samples 𝑑𝑝𝑒 

synthetic points from a probability density function 𝑃𝐻𝑆𝑝ℎ𝑒𝑟𝑒  with uniform distribution over the 

volume of a hypersphere centered at 𝑥𝑐𝑖  and with radius equals to the maximum distance 

between 𝑥𝑐𝑖 and any neighbours of 𝑥𝑖.  

2.2.2.2.2 Subcomponent: Model Resizing and Sharing 

RISE has also worked on the design and development of a communication-efficient and robust 
aggregation rule which can be used in peer-to-peer FL and for non-IID data. After surveying the 
state-of-the-art techniques for improving communication efficiency and robustness, RISE has 
designed a novel aggregation rule, called SparSFA, that ensures the smoothness the training 
process of FL. It considers both the communication efficiency and utility, and it is robust enough 
to defend against data or model poisoning attacks. Figure 12 depicts how the proposed model 
resizing and sharing subcomponent works. 

 

Figure 12 - The overview of subcomponent (Model resizing and sharing) 

Same design as the data rebalancer, SparSFA can be employed by ML-based IDS on edge 
devices which are regarded as the clients in FL setup. As shown in Figure 12, overall, the whole 
subcomponent can be divided into three parts: (i) model sparsification, (ii) clients' weight tuning, 
and (iii) optimization of the local model for intrusion detection. First, the local model is initially 
trained at each client with its local dataset. When the other neighbouring clients call for an update, 
Sparsifier module zeros out a significant number of the parameters, compressing the information 
to be shared by focusing on the most relevant parameters. This not only reduces the 
communication overhead, but also conceals some less-essential information of the model that 
could also lead to privacy leaks. Next, before updating the local model, the tuner module adjusts 
the score of model updates received from the connected neighbours of the client. Finally, the local 
model is updated by aggregating the tuned parameters of the connected neighbours of the client, 
and starts the next round of local training. This collaborative learning task runs iteratively until 
some level of convergence is attained or a maximum number of training rounds is reached.  

After designing the subcomponent, we first focus on developing Sparsifier. We decided to utilize 
model sparsification method and further improve Top-K sparsification proposed by Aji et al. [5]. 
The idea of model sparsification is to share small subset of the model parameters, and zero out 
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the rest. Top-K sparsification zeros out k parameters with the largest magnitude in the gradient 
are selected. However, the shortcoming of Top-K sparsification is that it is possible some specific 
parameters, which often contribute to large magnitudes in the gradient can dominate the 
sparsification process and other relevant parameters may not be shared with the peers. In 
addition, only sharing a specific part of model will limit the performance of the local model on the 
different clients, especially in non-IID scenarios. To overcome this limitation, we propose to 
improve TopK sparsification by means of adding momentum to the residual to restrict the impact 
of the current gradient, stabilizing the training, and improving the performance. We name the 
algorithm MomTopK. 

 

 

Algorithm 2 

Algorithm 2 described the detailed process of MomTopK. The main input is the parameters of the 
local model that will be shared with the neighbors and the two hyperparameters, the forgetting 
factor and sparse ratio. We first initialize the mask and the residual set. At t communication round, 
the residual is a trade-off summation of the residual from the previous iteration with accumulated 
gradients and the gradient obtained from the current gradient. (line 3). As shown in lines 4 and 5, 
the number of parameters to share is obtained by the sparse ratio, and the mask, which is a binary 
tensor, is generated based on the k largest values of the residual. Finally, the sparsified model's 
parameters are obtained as shown in line 7. The residual for the next round is obtained by the 
subtracting the masked gradient from current residual as described in line 6 of the algorithm. 

In order to defend against adversarial attacks, we design a robust federated aggregation rule by 
assigning trust scores to the client. It controls the contributions of its shared model. The trust 
score is computed according to their trustworthiness in the model updates provided at each 
training round relying on a set of five metrics. It includes data size, data variance, connectivity, 
model similarity, and model divergence. We assume the larger dataset one peer holds, the more 
relevant information it can provide. We also assume higher variance will correspond with a more 
diverse dataset. If the peer connects to many other clients, it means this specific peer is in a good 
position in the network topology. In one iteration, we measure the model similarity and model 
divergence between the original model, and the sparsifed model contributed from the peer. The 
more similar between two models, the safer the peer is assumed in the current iteration. Contrary 
to model similarity, when two models are divergent from each other, then this divergence brings 
more unpredictability to the model that is going to be updated. 

When client 𝑐𝑑 calls for update in 𝑡𝑡ℎ iteration, it assigns a score to each of its connected clients 
in the set 𝑁𝑐𝑑 = {𝑠: 𝑐𝑠 connected to 𝑐𝑑} based on these five metrics. The score to the client 𝑠 ∈

𝑁𝑐𝑑 is denoted by 𝑝𝑠,𝑑 and is defined as a linear combination of the five metrics where the last 

metric i.e., divergence, is regarded as a penalty to the linear combination. Thus, the score 𝑝𝑠,𝑑 in 

𝑡𝑡ℎ iteration can be obtained as: 
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𝑝𝑡
𝑠,𝑑 = 𝑎1 ⋅ DataSize⁡(𝑐𝑠) + 𝑎2 ⋅ DataVar⁡(𝑐𝑠) + 𝑎3 ⋅ Conn⁡(𝑐𝑠)

+𝑎4 ⋅ Cos𝑡⁡(�̂�𝑡,𝑠,𝒲𝑡,𝑑) − 𝑎5 ⋅ Div𝑡⁡(�̂�𝑡,𝑠,𝒲𝑡,𝑑)
 

where 𝑎1⋯𝑎5 ∈ 𝒜 ∈ ℝ5⁡are the scalar coefficients, and 𝑎5 is regarded as the penalty term. In 
order to find the optimal set of 𝒜  to correctly score the neighbor clients in set 𝑁𝑐𝑑 , we use 

Bayesian optimization to tune 𝑝𝑡
𝑠,𝑑 . This black-box optimization technique relies on Bayes 

Theorem to direct the search in order to find the minimum or maximum of an objective function 
[23]. In our case, we use the loss on the local training dataset of the client 𝑐𝑑 to learn the best 
coefficient combination. We build a probabilistic model of the objective function as the surrogate 
function on every client. We call this as the tuner module, as depicted in Figure 12, based on 
Bayes Theorem. 

2.2.2.3 Produced resources 

The developed code for Federated AI component, including two sub-components, written in 
Python is available on the GitLab repository https://gitlab.com/arcadian_iot/federated-ai. 

Algorithm Process: 

(1) Initialize every local model and weight the client by the data size and data variance.  

(2) Optional: Rebalancing the data: During each training epoch, the synthetic data are generated by 

calling HSphereSMOTE. The data are ready to be used for the local training and shared among 

peers. 

(3) Local training: The local model on each client is trained with its own data combined with 

synthetic data (its own and gathered from the peers) 

(4) Sparsification: The local model is sparsified by the proposed Mom-topK, and ready to be shared. 

(5) Share the local models with peers: Weighted Federated Averaging  

(6) The received model is tuned according to 5 metrics: peer’s data_size, data_variance, connectivity, 

model similarity, model divergence. 

(7) Update the local models.  
 

Structure of the repository: 

- 0_data: 

o IoT:  

▪ 0_down.sh: the shell script to download the required dataset. 

▪ data_process.py: the script that splits the dataset and save the data to the pickle files. 

• Two arguments: 

o –-fiveclient, Boolean. It splits the dataset to 5 subsets that is designed for example 

experiments.  

o –num_client, integer, optional. It splits the dataset to any number of subsets. (It 

cannot be specified with --fiveclient) 

o UNSW: 

▪ 0_down.sh: the shell script to download the required dataset. 

▪ data_process.py: the script that splits the dataset and save the data to the pickle files. 

• Two arguments: 

o –-fiveclient: Boolean: It splits the dataset to 5 subsets that is designed for example 

experiments  

o –num_client: integer, optional: It splits the dataset to any number of subsets. (It 

cannot be specified with –fiveclient) 

 

- Core: 
o HSphereSMOTE.py: the main file that includes the main functions of the data rebalancer. 

https://gitlab.com/arcadian_iot/federated-ai
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o P2P_Aggregation.py: the main file that includes functions of proposed methods for model 

sparsification and defenses. 

o SOTA_attacks.py: the file that contains implemented state-of-the-art attacks, including label 

flipping attack, data noise attack, objective function poisoning attack, and Byzantine attack. The 

attack can be selected to proceed in the main python script with assigned argument.  

o SOTA_Defense.py:  the file that contains implemented state-of-the-art defenses, including Krum, 

Trimmed-Mean, Median 

- Utils: 
o Data_distribute.py: the file that includes the functions for distributing data points and 

normalizing them.  

o Models.py: the file that contains the model structure. 

o Train.py: the main file that contains the functions for model training. 

o Utils.py: the file that contains regular functions.  

- Main.py: The main python script to run the example program with given dataset and proposed 

aggregation framework with specific arguments. 

2.2.3 Design specification 

2.2.3.1 Logical architecture view 

  

Figure 13 - Component architecture of Federated AI 

The component further provides accurate and trustworthy framework by addressing challenges 
of federated learning, such as imbalanced and non-IID data, and adversarial attacks. Federated 
AI includes two sub-components: data rebalancer and model resizing and sharing as shown in 
Figure 13. This component directly interacts with Cyber Threat Intelligence (CTI) component. 

• Data rebalancer: provides a way to rebalance and fit non-IID data to the framework. It 
directly interfaces with the local database within the client component. 

• Model resizing and sharing: provides a communication-efficient and robust framework 
for model aggregation. It directly interfaces with the local ML algorithm within the client 
component. 
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2.2.3.2 Sequence diagrams 

Figure 14 describes the sequence diagram of the Federated AI component which includes the 
functions for data rebalancing, sparsification, tuning, and local training. As a first step, the central 
server transfers the model configuration to all clients in the federated setup. Starting from the 
local dataset, the data rebalancer generates a set of synthetic points to rebalance the distribution 
between classes. The synthetic points are exchanged between neighbour clients only. The new 
dataset made of local original and synthetic data, and neighbour synthetic data are used to train 
the local model and to run the sparsification algorithm. The generated sparsified models are 
exchanged between neighbour clients. Finally, the local model is updated by aggregating the 
tuned parameters of the connected neighbours and starts the next round of local training. All these 
steps are part of a loop which is iteratively executed until convergence is reached. 

 

Figure 14 - Sequence diagram 

2.2.3.3 Interface description 

The external interfaces are the following: 

• Behaviour Monitoring: Access to Federated AI libraries for data rebalancing; the 
component will be used to balance the two classes (normal and malicious behaviour) for 
IoT device intrusion detection. 

• Behaviour Monitoring: Access to Federated AI libraries for Communication-efficient and 
robust aggregation rule; the component will be used to reduce the communication 
overhead in the federated communication and in parallel make the models robust against 
data and model poisoning attack. 

• CTI: Access to Federated AI libraries for Communication-efficient and robust aggregation 
rule; the component will be used to reduce the communication overhead in the federated 
communication and in parallel make the models robust against data and model poisoning 
attack. 
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Table 3 below details the external interfaces: 

Partner Definition Channel Exchange 

IPN 
Behaviour 

Monitoring 
Direct Code 
Integration 

Data Rebalancing Libraries 

IPN 
Behaviour 

Monitoring 
Direct Code 
Integration 

Communication-efficient and 
robust aggregation rule Libraries 

RISE CTI 
Direct Code 
Integration 

Communication-efficient and 
robust aggregation rule Libraries 

Table 3 - External interfaces of the Federated AI component 

2.2.3.4 Technical solution 

2.2.3.4.1 API specification 

Federated AI functionalities are provided as a set of libraries that are directed integrated as part 
of the ML-based components (behaviour monitoring and CTI component). 

2.2.4 Evaluation and results 

We have evaluated HSphere-SMOTE for data rebalancing in federated set-ups with two open-
source datasets. One is N-BaIoT [13], which consists of real-world network traffic flows from 9 
commercial IoT devices. This dataset is collected for detecting Botnet in IoT network. It captures 
both benign traffic and malicious traffic carried by 2 botnets (Mirai, BASHLITE). We labelled the 
malicious traffic from Mirai as abnormal traffic. The other dataset is UNSW BoT-IoT [14], which 
includes data collected in Cyber Range Lab in UNSW. They simulate the network behaviour of 
devices in IoT network that is under Botnet attack. We measured False Negative Rate (FNR), 
False Positive Rate (FPR), Precision at recall 75%, and Recall at precision 75% on HSphere-
SMOTE and compare its performance with every mentioned baseline's in two scenarios: (i) IID 
and imbalanced data, and (ii) non-IID and imbalanced data. The empirical results show HSphere-
SMOTE outperforms the other baselines.  

RISE has also evaluated SparSFA performance on communication efficiency and its robustness 
against poisoning attacks. We first measure communication efficiency, that is MomTopK of 
SparSFA, with the assumption that all clients are benign and no attack takes place. We compare 
MomTopK with other two state-of-the-arts methods: Random-K [6] and Top-K[5]. The results 
show that MomTopK can converge within 15 epochs with almost 100% of AUC and 96% of F1-
score. It outperforms than the other two baselines. 

We second measure its robustness in 5 different scenarios, (i) 5 clients with 1 adversary in 
complete graph, (ii) 5 clients with 1 adversary in incomplete graph, (iii) 5 clients with 1 adversary 
in a chain, (iv) 10 clients with 1 adversary in random network topology, and (v) 20 clients with 3 
adversaries in random network topology. Our experiments also show that SparSFA is robust to 4 
different data and model poisoning attacks, even outperforming other robust aggregation 
schemes like Krum [11], Trimmed-Mean and Median [10]. In all attack scenarios, SparSFA shows 
a F1-score above 95% and a FNR below 5%, even in scenarios with data imbalance, making it 
suitable for distributed IDS in IoT environments. 

2.2.5 Future work 

Future work outside the timeframe of WP3 could potentially concentrate on advancing the secure 
communication of Federated AI. This could involve incorporating and utilizing techniques like 
homomorphic encryption and multi-party computation. Additionally, efforts may be directed 
towards developing robust aggregation methods that can protect against privacy attacks. For 
instance, preventing the inference of the private training set when a malicious attacker queries 
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the trained FL model. 
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3 SECURITY PLANE 

3.1 Network Flow Monitoring 

3.1.1 Overview 

3.1.1.1 Description 

Within the scope of the ARCADIAN-IoT project, the University of West of Scotland (UWS) has 
developed the Network Flow Monitoring (NFM) component that acts as an enhancement of 
existing Network Intrusion Detection Systems (NIDS), such as Snort,6 to achieve the detection of 
known malicious Distributed Denial of Service (DDoS) along the entire infrastructure of the 5G 
network. This has been achieved by the contribution of two different subcomponents: (I) a NIDS 
with an updated set of rules for known DDoS attacks, and (II) the Security Flow Monitoring Agent 
(SFMA) that acts as a wrapper for the NIDS alert and provides fine data information about the 
malicious flow detected. This component provides support not only for traditional IP networks, but 
also for the overlay networks currently used in cloud infrastructures employing 
overlay/encapsulation protocols such as Virtual Extensible LAN (VxLAN), Generic Routing 
Encapsulation (GRE), Generic Network Virtualization Encapsulation (GENEVE), those currently 
used in enterprise infrastructures such as VLAN, and those currently used in cellular and IoT 
mobile operator networks such as GTP used in LTE-M and NB-IoT.   

3.1.1.2 Requirements 

A recall of the high-level requirement that has been previously defined and provided in deliverable 
D2.4 [2] is given below.  

Requirement 3.1.1 – IoT Network Detection: The flow monitoring component will have the 
capabilities to perform the detection of DDoS attacks in any network segment of the IoT 
infrastructure, triggering the associated alert. 

3.1.1.3 Objectives and KPIs 

KPI scope  

Provide new alert metadata information about IoT and 5G flow structure, within the supported 

network segments with a number of >= 4 (Edge, Core, RAN and Transport). 

Measurable Indicator 

Number of network segments supported to get the metadata information. 

Baseline 
 

Supporting only Core network segment (value: 1) 

Target value Achieved value 

>= 4 (Edge, Core, RAN and Transport)  = 4 (Edge, Core, RAN and Transport) 

 

KPI scope  

Provide transversal detection capabilities to protect, simultaneously tenant infrastructure and 

the infrastructure provider by supporting >=4 encapsulations and tunnelling protocols widely 

used in overlay networks inherent to 4G/5G IoT mobile infrastructures such as VXLAN, GRE, 

GENEVE and GTP.   

Measurable Indicator 

The number of supported encapsulations and tunnelling protocols widely used in overlay 

networks inherent to 4G/5G IoT mobile infrastructures. 

Baseline 
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Supported 0 encapsulation and tunnelling protocols 

Target value Achieved value 

>= 4 (VXLAN, GRE, GENEVE, GTP) = 4 (VXLAN, GRE, GENEVE, GTP) 

3.1.2 Technology research 

3.1.2.1 Background 

The 5GS (5G System) architecture presents several different stakeholders that are involved in 
the provisioning of 5G network resources, as presented in the View on 5G Architecture by the 5G 
PPP (5G Public Private Partnership). A key role in the provision of 5G services is that of the 
Service Provider (SP), which interacts directly with service customers and obtains and 
orchestrates resources from Network Operators, VISPs (Virtualisation Infrastructure Service 
Providers) and DCSPs (Data Centre Service Providers), collectively referred to as infrastructure 
providers. Therefore, each of these stakeholders will have a different purpose in terms of acting 
on the data flow that is happening in their infrastructure (either physical or virtualised). This means 
that, along the entire route that a data flow must take, from its creation in the IoT device to its 
destination, passing through the entire 5G communications infrastructure, it will have variations 
in its morphology, despite its invariability in content. To achieve this, various encapsulation 
mechanisms are used to isolate traffic from each of the tenants that may be installed on the same 
infrastructure. Virtual Extensive LAN (VxLAN) is one of the examples, which is used to create the 
so-called multi-tenancy, isolating the traffic for each of the tenants which are occupying the 
infrastructure. This technology allows the creation of a first encapsulation of the data flow to 
achieve such isolation which will be used to identify the tenant. GTP is used as a second 
encapsulation, according to the standards of the 5G, allowing end-user mobility (Figure 15). 

The research carried out by UWS until this point within ARCADIAN-IoT project has revealed that 
the closest state of the art associated to the Network Flow Monitoring component is the one 
related to Network Intrusion Detection System (NIDS). These systems usually perform 
autonomous inspection of traffic and notifies via an alert, that the network is being compromised 
by a cyber-attack. The main problems with these tools are:   

• They usually work with traditional IP traffic. Hence, leaving behind the multiple overlay 
network encapsulations expected in 4G/5G-IoT systems (e.g. VXLAN, GRE, GTP, etc.). 

• They do not provide an extended North Bound Interface with a standardised reporting 
system to send the fine-grained metadata information from the inner and overlay headers 
regarding the malicious flow. 

 

Figure 15 - 5G multi-stakeholder network segments 

3.1.2.2 Research findings and achievements 

Traditional signature-based NIDS such as Snort lack of 5G infrastructure and network information. 
This depicts a major missing point for all network infrastructure providers, that are directly affected 
in the moment their physical and virtualized infrastructures are threatened and need to be 
protected. All overlay network information stated in the paragraph above is important when the 
detection of a threat takes place. Fine grain metadata should be provided at the flow level, so the 
consequent actors of the protection capabilities are able to determine the idoneal place where to 
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take the mitigation. Figure 16 shows an example of the information that a Snort IDS Event is able 
to retrieve (see left in Figure 16). As shown in the figure, the NIDS only gets the last overlay 
encapsulation, related in this case to the Virtual eXtensible Local Area Network (VXLAN) (see 
right in Figure 16). In the figure it can also be noticed that a nested encapsulation of GPRS 
Tunnelling Protocol (GTP) is also used by the 5G system, with more information related to the 
network flow. All this information is crucial when the system needs to find the best action in order 
to mitigate an attack. 

 

Figure 16 - Snort IDS event against all overlay network information from the flow 

 

As a novel capability, the NIDS should be able to detect simultaneously attacks being addressed 
over a 5G user, a tenant, or the entire infrastructure. The proposed architecture for the NFM 
component makes the following contributions and achievements to IoT 5G Network security:   

• Distributed detection of the threat as an extension of traditional NIDS solutions for all 
network segments in a 4G/5G-IoT infrastructure.Support for encapsulation and tunnelling 
protocols inherent in 4G/5G deployments such as VXLAN, GRE, GTP and/or GENEVE. 

• Extended North Bound Interface (NBI) providing IDS events to upper management layers 
providing fine-grained metadata about source and nature of the attack based on a DPI of 
the 4G/5G-IoT traffic. 

• Protection awareness for digital service providers alongside the physical 5G infrastructure 
and also 5G user aware. 

3.1.2.3 Produced resources 

Due to the application of IPR safeguarding measures, UWS has not the intention to make any 
release of the source code for this component and thus it will not be made available in any public 
or private repository or server outside of our premises. For integration purposes, a functional 
prototype of the Network Flow Monitoring component will be released for the ARCADIAN-IoT 
consortium. 
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3.1.3 Design specification 

3.1.3.1 Logical architecture view 

 

Figure 17 - Logical architecture of the Network Flow Monitoring 

Figure 17 describes the logical architecture that follows the Network Flow Monitoring component. 

The workflow of the component starts with the monitoring of the data plane in the network to which 

the NFM is attached (see 1 in Figure 17). A Network Intrusion Detection System (NIDS) is 

inspecting each packet in that data plane and will be executing a set of security rules (see 2 in 

Figure 17). When a rule matches with the packet inspected, the NIDS will write a new event in a 

Unified2 log file with information on the threat (see 3 in Figure 17). For this work it has been 

chosen Snort as NIDS and first subcomponent of the NFM. 

The second and last subcomponent is the Security Flow Monitoring Agent (SFMA), whose 

workflow starts with the continuous reading of the Unified2 log file written by the NIDS. As soon 

as the SFMA U2 watcher collects a new event from the U2 log file, the SFMA will start working 

(see 4 in Figure 17). As the NIDS is not capable of recording full network flow information with all 

encapsulation information and so on, the SFMA is in charge of recording this overlay network 

information that lacks the NIDS (see 5 in Figure 17). Finally, the SFMA will aggregate all-important 

5G-IoT overlay network information to the publisher exchange, building an Alert for the following 

network security self-protection control loop components (see 6 in Figure 17). 

3.1.3.2 Sequence diagrams 

Figure 18 describes the sequence diagram of the Network Flow Monitoring component in 



D3.3: Horizontal Planes - final version 

 

© ARCADIAN-IoT Consortium 2021-2024               Page 49 of 167 

relationship with the consequent cognitive loop for network security component, the Network Self-
Healing. The first loop oversees watching and reading all new events that the NIDS is writing 
continuously to the unified2 log file when detects a potentially malicious flow. Once this flow is 
detected, the Security Flow Monitoring Agent subcomponent will start the second loop, recording 
all nested overlay encapsulations belonging to the flow. Thus, the Metrics Aggregator can build 
the proper Alert with all fine-grain metadata information about the malicious flow detected and will 
send this created Alert to the Network IDS Events message bus exchange. Therefore, the 
Network Self-Healing will be able to perform its task with the information provided by the Network 
Flow Monitoring. 

 

 

Figure 18 - Sequence diagram of the Network Flow Monitoring component 

3.1.3.3 Interface description 

• Network IDS Events is the interface where the Alerts from the Network Flow Monitoring 
will be published. All details and fields of these Alerts are described in previous Section 
3.1.2.3.  

• Network Self-Protection confirmations is the interface that the Network Self-Protection is 
using to provide information about the successful enforcement of the security rule provided 
by the Network Self-Healing component.  

Partner Definition Channel Exchange 

UWS Network Self-Healing 
RabbitMQ   

AMQP 0.9.1 
Network IDS Events 

UWS Network Self-Protection 
RabbitMQ 

AMQP 0.9.1 
Network Self-Protection 

Confirmations 

UC Reputation System 
RabbitMQ 

AMQP 0.9.1 
Network IDS Events 

RISE Cyber Threat Intelligence 
RabbitMQ 

AMQP 0.9.1 
Network IDS Events 
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Table 4 - External interfaces of the Network Flow Monitoring component 

 

As a result of the development done on the Network Flow Monitoring component, a new resource 
has been produced. This is the JSON object that is being submitted to the Network IDS Events 
exchange for the message bus. The table below defines all fields of the JSON object. 

Resource 

Resource is the JSON object with information about the malicious flow detected. This 

information is described in the table below and contains 5G and IoT network flow information. 

Name Description Type 

encapsulationLayer 
Specifies the number of encapsulation layers of 

the flow detected (0, 1 or 2) 
Integer 

encapsulationID1 

Identifier of the first encapsulation layer level 

found in the detected flow (only when detected 

1 or more encapsulation levels) 

String 

encapsulationID2 

Identifier of the second encapsulation layer level 

found in the detected flow (only when detected 

2 or more encapsulation levels) 

String 

encapsulationType1 

Encapsulation name used in the first 

encapsulation layer level (i.e., gtp, vxlan, 

geneve...) (only when detected 1 or more 

encapsulation levels) 

String 

encapsulationType2 

Encapsulation name used in the second 

encapsulation layer level (i.e., gtp, vxlan, 

geneve...) (only when detected 2 or more 

encapsulation levels) 

String 

sense 

Sense of the flow that has been detected at the 

interface where the traffic is being mirrored, can 

take as value “INGRESS” or “EGRESS” 

String 

outMacSrc Source MAC address of the detected flow String 

outMacDst Destination MAC address of the detected flow String 

srcIP Source IP address of the detected flow String 

dstIP Destination IP address of the detected flow String 

outSrcIP 
Outer source IP address of the consequent 

nested encapsulation of the detected flow 
String 

outDstIP 
Outer destination IP address of the consequent 

nested encapsulation of the detected flow 
String 

l4Proto Number code of the IP protocol String 

tos 
Type of Service of the IPv4 header dataframe of 

the flow detected 
String 

srcPort Source port number of the flow detected String 

dstPort Destination port number of the flow detected String 
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resourceId Is the unique identifier of the Flow. String 

resourceType Constant Value – Always “FLOW_SAMPLE” String 

state 
Defines the actual state of the flow, it can take 

as value “ACTIVE” or “TERMINATED” 
String 

serviceInstanceResourceId 

Is the unique identifier of the component that 

has reported the flow (useful for distributed 

NFM) 

String 

reportedTime 

Is the number of milliseconds of the system 

when the NFM is reporting the malicious flow 

detected by the IDS 

Long 

Alert 

Alert is the JSON object with information about the alert reported to the rest of the system. 

This information is described in the table below and contains information about the type and 

importance of the alert. 

Name Description Type 

alertType 

Is the ordinal number of the classification 

configuration file of the IDS that matched with 

the IDS rule 

String 

alertReasonId Is the IDS signature identifier String 

alertAssertionType “NEGATIVE” or “INFORMATIVE” String 

alertImpact 
Is the IDS severity of the malicious flow 

detected by the matched rule 
Integer 

alertTime 

Is the number of milliseconds of the system 

when the Snort or other IDS has detected the 

malicious flow 

Long 

resourceId Is the unique identifier of the alert String 

resourceType Constant Value – Always “ALERT” String 

state 

Is the actual state of the alert object in the 

system, can take as value: “FIRED” or 

“RETRACTED” 

String 

serviceInstanceResourceId 

Is the unique identifier of the component that 

has reported the alert (useful for distributed 

NFM) 

String 

reportedTime 
Is the number of milliseconds of the system 

when the NFM is reporting the alert 
Long 

 

3.1.3.4 Technical solution 

3.1.3.4.1 Deployment architecture view 

Figure 19 denotes the global deployment architecture view followed by the UWS cognitive loop 
for network security components alongside an entire 5G network infrastructure. The 5G 
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architecture is composed of different network segments and layers. It can be differentiated the 
Radio Access Network (RAN) segment, where IoT devices are connecting to the different 5G gNB 
with its respective Distributed Unit (DU) that connects to the consequent network segment, the 
Edge. This network segment oversees the responsibility of deploying and managing the digital 
services from the rest of the stakeholders involved in the system, as Digital Communication 
Services Providers. They use their virtual Central Units to manage communications across the 
rest of the infrastructure. In addition, in the Edge segment can be found Multi-access Edge 
Computing applications in order to approach computing services and capabilities to the end user. 
The transport network segment is the one between the Edge and Core premises, where the traffic 
is routed from the specific geographically distributed Edge to the centralized Core. The last 
network segment in the infrastructure is the Core, where first user authentication takes place. 
Once the communications leave the Core segment, they are forwarded to an inter-domain 
network segment outside the infrastructure provider’s domain. 

The Network Flow Monitoring component has two different deployment views. A first view is a 
centralized approach in a Service Layer where traffic across the network needs to be mirrored. 
The second view is a distributed approach, where the NFM can be instantiated alongside the 
different segments and stakeholders of the network, performing distributed and multi-layered 
detection of potentially dangerous threats. 

 

 

Figure 19 - Deployment architecture view of the Network Flow Monitoring component 

3.1.3.4.2 API specification 

Network Flow Monitoring component is using a message bus publication/subscription channel to 
interact with the rest of the components in the ARCADIAN-IoT framework. This component uses 
two different exchanges: the first is the Network IDS Events, where the Network Self-Healing, 
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Cyber Threat Intelligence and Reputation System will be retrieving Alerts. As a second interface, 
the NFM component will be subscribed to the Network Self-Protection confirmations. This 
information will be used to confirm the security rule has been already enforced by the NSP 
component and thus the effectiveness of the cognitive self-protection security network loop will 
be also confirmed. 

3.1.4 Evaluation and results 

 
The testbed used for the empirical validation and evaluation is the same for the 3 ARCADIAN-IoT 
components composing the Network Self-Protection Loop, that is, the Network Flow Monitoring, 
the Network Self-Healing, and the Network Self-Protection. These 3 components set the self-
protection loop provided by the UWS which, the NFM detects the malicious flows; the NSH 
analyses and creates the healing plans; and the NSP mitigates the incoming attack. Thus, in the 
following sections regarding the NSH and the NSP, the testbed description, the different scenarios 
described in Table 4 and the results figure in this section will be referenced.  
 

• Framework Validation: To substantiate the functionality and practicality of the proposed 
framework in this research, a dedicated testbed environment was meticulously developed. 
This testbed served as the platform for conducting an extensive array of experiments 
aimed at collecting data for subsequent analysis. 

• Testbed Configuration: The testbed was designed to emulate a 5G network 
infrastructure closely resembling the configuration illustrated in Figure 19 of the research. 
In this emulation, the network infrastructure was subjected to a UDP-based Distributed 
Denial of Service (DDoS) attack, originating from compromised IoT devices. 

• Scenario A: The empirical validation of the proposed framework was conducted in two 
distinct scenarios. In the first scenario (A), the focus was on manipulating the number of 
attackers, with varying quantities of User Equipment (UEs) connected to each gNB. The 
remaining network elements in this topology remained constant, comprising one gNB 
linked to each Data Service Provider (DSP), two DSPs per Internet Service Provider (ISP) 
with multi-tenant isolation, and two Edge nodes interfacing with one Core node. 

• Scenario B: In the second scenario (B), a more intricate network topology was 
established to expand the potential points of action for mitigating the attack. While 
maintaining the same number of attackers as in Scenario A, the network topology was 
configured as follows: two gNBs connected to each DSP, two DSPs per ISP, and four 
Edge nodes interfacing with one Core node. 

These scenarios were devised to assess the performance and efficacy of the proposed framework 
under different conditions, allowing for a comprehensive evaluation of its capabilities in handling 
various network configurations and attack scenarios, thus validating the proposed KPIs. 

Scenario A B 

No UE x gNB 4 8 12 16 1 2 3 4 

No gNB x DSP 1 1 1 1 2 2 2 2 

No DSP 2 2 2 2 2 2 2 2 

No Edge 2 2 2 2 4 4 4 4 

No Core 1 1 1 1 1 1 1 1 

Total attackers 16 32 48 64 16 32 48 64 

Packet rate each UE (pps) 5600 2800 1875 1400 5600 2800 1875 1400 

Consumed BW each UE (Mbps) 64 32 22 16 64 32 22 16 

Table 5 - Configuration of 8 different experiments for Scenarios A and B 



D3.3: Horizontal Planes - final version 

 

© ARCADIAN-IoT Consortium 2021-2024               Page 54 of 167 

The research encompasses a series of experiments, as detailed in Table 5, with results 
graphically presented in Figure 20, divided into two sections representing scenarios A and B. In 
both sections, the X-axis quantifies the number of infected IoT devices (16, 32, 48, and 64), while 
the Y-axis portrays the average time required by the Cognitive Self-protection framework for the 
complete process from attack detection to mitigation, measured in seconds. The graph employs 
distinct colours to signify the time consumption by each framework component: blue for Network 
Flow Monitoring (NFM), orange for Network Self-healing (NSH), and green for Network Self-
protection (NSP). Results for NSP and NSH are discussed in sections 3.4 and 3.6 respectively. 
This visual representation offers insights into the efficiency of the framework in scenarios A and 
B, showcasing variations in response times with varying numbers of infected IoT devices. 

 

Figure 20 Average time consumed by the Cognitive Self-protection loop, Scenario A (left) against 
Scenario B (right) 

Regarding the individual impact of each component, the Network Flow Monitoring (NFM) 
component exhibits noteworthy performance superiority compared to the other two main actors 
involved in the self-protection loop (i.e. NSH and NSP). Hence, it is worth noting that the NFM 
component does not add relevant load to the system. Its performance remains consistently stable 
across all scenarios (A and B), even as the number of infected IoT devices increases. In the most 
challenging scenario involving 64 IoT devices, NFM demonstrates efficient response times, 
consuming 2.06 seconds in scenario A and 2.20 seconds in scenario B. These findings 
underscore the promising scalability of the NFM regarding the network topology size, the number 
of IoT UEs simultaneously connected and the number of different flows handled by this 
ARCADIAN-IoT architectural component. 

Furthermore, it is essential to emphasize that all the configurations outlined in Table 4 encompass 
scenarios and topologies characterized by the involvement of multiple stakeholders, the 
incorporation of diverse network segments, and the utilization of various overlay network layers 
within the network architecture. Consequently, the Key Performance Indicators (KPIs) for the 
Network Flow Monitoring (NFM) component have been comprehensively addressed and 
successfully attained across these experimental scenarios. 

3.1.5 Future work 

Integration with ARCADIAN-IoT Framework Components: Future work should focus 
on the seamless integration of the proposed framework with other components of the 
ARCADIAN-IoT framework, particularly the Cyber Threat Intelligence (CTI) and 
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Remediation System (RS) components. This integration would enhance the overall 
cybersecurity ecosystem. 
Beyond ARCADIAN-IoT - Multi-Interface NIDS: A prospective avenue for research 
involves the implementation of multiple Network Intrusion Detection System (NIDS) 
instances to concurrently monitor and assess multiple network interfaces. This expansion 
would bolster the framework's ability to comprehensively monitor and protect diverse 
network segments. 
Beyond ARCADIAN-IoT - Enhanced NFM Capabilities: Further research should 
explore the augmentation of Network Flow Monitoring (NFM) capabilities to address 
emerging network-based cyberthreats. Specifically, investigating threats such as DNS and 
ARP spoofing would extend the NFM's capacity to identify and mitigate a broader 
spectrum of cybersecurity risks. 

 

3.2 Device Behaviour Monitoring 

3.2.1 Overview 

3.2.1.1 Description 

One of the ARCADIAN-IoT project’s objectives was to develop a component that detects 
anomalous behaviours on devices. The developed component is a host-based intrusion detection 
system (HIDS) directed for IoT devices. The component takes the task of examining events that 
are specific to the host device (e.g., device reputation, sequences of system calls or 
authentication attempts).  

The Device Behaviour Monitoring (DBM) component is comprised by a set of subcomponents 
that collect and classify the events with the use of Machine Learning (ML) models. The models 
are updated via a FL scheme that increases privacy preservation of the devices.  

The anomaly detection is performed in real time to make sure that the device is operating normally 
and detect signs of anomalies upon abnormal operational behaviour (e.g., malfunctioning or 
intrusion attempts). The resulting output of this component consists of a value that indicates 
whether the event was classified as an anomaly (i.e., the activity relates to an ongoing anomaly 
or intrusion attempt) or normal behaviour, with a respective confidence level associated with the 
classification. The resulting information is then encapsulated and forwarded to other ARCADIAN-
IoT components via a message bus (RabbitMQ) or in-device communication (inter-thread 
communication). Specifically, an anomaly is detected, the information should be sent, for 
instance, to the IoT Device Self-protection component, which has the role of protecting devices 
against anomalous behaviours or incoming attacks. In a complementary way, there were applied 
two eXplainable AI (XAI) methods to retrieve explanations for the component's results and provide 
insights about the impact of certain system calls. Further interfaces are described later. 

3.2.1.2 Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 is given below. 

Requirement 3.2.1 – User logs access: The Behaviour Monitoring component must have access 
to device’s user logs in order to detect possible security issues. 

Requirement 3.2.2 – Device permissions: The Behaviour Monitoring component must be aware 
of permissions granted to applications/services accessing the device. 

Requirement 3.2.3 – Local model training capabilities: The ML models should be lightweight and 
be able to run on the device. 

Requirement 3.2.4 – Response to anomalies: The Behaviour Monitoring component should be 
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able to send an alarm, in real time, when anomalous behaviour is detected. 

Requirement 3.2.5 – Secure Communication: The Behaviour Monitoring component 
communications between the devices and the central server should be secured (e.g., using 
encryption). 

3.2.1.3 Objectives and KPIs 

A recall (with supplemental information) of the objectives and KPIs defined in the agreement is 
provided bellow. 

 

KPI scope  

Applicability of IDS models in IoT devices 

Measurable Indicator 

Model performance (e.g., TPR) 

Benchmarking 

Accuracy >= 0.96 
TPR >= 0.95 
FPR <=0.05 
F1-Score >= 0.96 [38] 

Target value Achieved value 

Accuracy >= 0.97 
TPR >= 0.98 
FPR <=0.01 
F1-Score >= 0.99 

Accuracy ~= 0.97 
TPR >= 0.98 
FPR <=0.01 
F1-Score >= 0.99 

 

KPI scope  

Ability to process different input types with non-root privileges (e.g., syscalls, auth, rep) 

Measurable Indicator 

Number of inputs considered 

Target value Achieved value 

Consider at least 3 types of input (e.g., 
syscall sequences, reputation score, 
authentication results) 

Considers 3 types of input (I.e., syscall 
sequences, reputation score, authentication 
events) 

 

KPI scope  

Deployment in heterogenous devices 

Measurable Indicator 

Number of supported devices 

Target value Achieved value 

Support at least 2 types of devices (e.g., 
drone device, smartphone, industrial IoT 
device – developed by BOX2M) 

Supports 2 types of devices (drone device 
and smartphone) 

 

3.2.2 Technology research 

This section provides a background on the topic of the solution, presents the research done 
relative to the current state of the art of Host Intrusion Detection solutions, research findings as 
well as achievements and produced resources.  
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3.2.2.1 Background 

Intrusion Detection based on System Call Anomaly Detection 

The main objective of an Intrusion Detection System (IDS) is to examine activities within a system 
or a network, in order to identify possible intrusions from malicious sources. Generally, IDS can 
be divided into two main groups, Host Intrusion Detection System (HIDS) or Network Intrusion 
Detection System (NIDS). This component is part of the former group (i.e., HIDS).  

Furthermore, intrusion detection can be performed based on two different approaches: Signature 
Intrusion Detection system (SIDS) or Anomaly Intrusion Detection System (AIDS). A brief 
comparison between the two techniques is summarised in Table 6 - Comparison between SIDS 
and AIDS. The first (SIDS) relies on a system which can be based on known threats (with rules 
about the collected data), while the second (AIDS) monitors the system behaviour to detect 
abnormalities that deviate from the normal baseline behaviour. Both methods have their benefits, 
with signature detection being accurate and working well on known threats, but being unable to 
detect zero-day attacks, contrary to AIDS. On the other hand, anomaly detection requires 
characterizing and identifying the complete normal behaviour of the system, which can be difficult 
to achieve.  

 

 Advantages Disadvantages 

SIDS 

• Very effective in detecting 

intrusions with a very low false 

positive rate; 

• Promptly identifies the intrusions; 

• Superior in detecting already 

known attacks; 

• Simpler design. 

• Needs to be updated frequently with 

new signatures; 

• If an existing known signature (i.e., 

intrusion) suffers from slight deviations, 

the system wouldn't be able to detect 

that signature; 

• Is not able to detect zero-day attacks; 

• Not suited to detect multistep attacks. 

AIDS 

• Can be used to detect unknown 

attacks; 

• Could be used in order to create 

an intrusion signature. 

• Has a high false positive rate; 

• Hard to build a normal profile for a 

dynamic computer system; 

• Unclassified alerts; 

• Needs initial training. 

Table 6 - Comparison between SIDS and AIDS 

In HIDS, the data from the host system’s audit and logging mechanisms are analysed to look for 
signs that the system has been broken into or a possible attack. The data may include activity 
from the local hosts’ logins, file access, privilege escalation, alteration of system privileges, 
system calls (the focus of this component), file system changes and application logs, and many 
others.  

Consider a scenario where an IoT device is being used on an open network and a third party 
intends to perform malicious actions on the device. To detect these malicious actions, one 
possibility is to search for specific characteristics of the attack. For instance, the attacker performs 
actions/commands on the system that are different from the way a typical user would. This can 
be used to create a detection system that will search for these deviations from the normal 
behaviour on the IoT device. Some examples of these anomalies are unusual read/write (or other 
system calls) behaviour or multiple login attempts in a certain timeframe to the machine. 

System call traces are often used in detecting intrusions with HIDS on program level. System call 
traces are used to find repeated patterns of system calls, enabling anomaly detection and misuse 
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detection during execution, intrusions could be in the form of sub-sequential traces of intrusive 
activities. A system call is a fundamental interface between a program on a machine and the 
operating system. The system call is a way for a user program to request an operation to be 
completed by the operating system. 

System calls are an adequate data source for HIDSs because they are a primary artifact of the 
OS kernel, and their collection imposes low computational overhead. The effective use of system 
calls within host-based anomaly detection was first proposed by Forest et al.[39] with the following 
advantages: 
 

• System calls (i.e., root processes) are more advantageous than a typical user process 
because a system call will have greater access to the system’s resources. 

• An operating system will have a finite list of operations, which creates predictable system 
call sequences under normal system operations. 

Forrest et al. processed short sequences of system calls to generate profiles of normal program 
behaviour. This approach is based on an enumeration sequence-based method known as STIDE 
(Sequence Time Delay Embedding). In this technique, the sliding window method is used to 
generate short sequences of system call traces and then a database with the signature of the 
normal behaviour with the invoked sequences. This algorithm was inspired by the natural immune 
systems of organisms. The approach is claimed to be simple and efficient to deploy for possible 
real-time implementation.  

Lee et al. [40] attempted to improve the results obtained by Forrest by using machine learning 
algorithms to extract information from normal and abnormal sequences of system call traces. 
Frequency based methods were also explored by Helman and Bhangoo [41]. However, instead 
of keeping track of frequencies of each system call individually, the authors recorded frequencies 
of sequences of system calls by tokenizing the system calls into ngram sequences, which enabled 
them to preserve the order of the system calls. 

Liao and Vemuri [42] took a slightly different approach. Instead of keeping track of sequences of 
calls, they monitor the frequency of system calls that are issued by a program. By doing this, they 
avoid having to treat every system call individually and reduce the overhead involved in analysing 
and storing every system call. A system call is considered an instance of a text and the whole set 
of calls issued as a document. 

In traditional Machine Learning (ML) approaches, it is common to have a centralized server or a 
cloud platform, where data from several devices (e.g., smartphones, tablets, laptops, smart carts) 
is aggregated and consequently used to train the central model. Such devices collect vast 
amounts of data, often sensitive or private, which inherently creates a significant risk by having 
such data stored on a central server.  Thus, it is essential to employ solutions that help maintain 
user data private and secure. Back in 2016, as part of an effort to devise a decentralized method 
for using data from mobile devices to improve the user experience of other AI focused solutions, 
Google proposed Federated Learning. In Federated Learning, the local training data is kept on 
device-level, meaning that the client data is not directly transmitted over the network to prevent 
any data from leaking, therefore ensuring a basic level of user or device privacy. The only data to 
ever be transferred are the locally computed updates from each device to a central aggregator 
server, which is a cloud-based distributed service (referred to as a server model) where data are 
aggregated.  

Overall, the behaviour monitoring component employs a HIDS approach complemented by a 
Federated Learning design to train the MLP-based model. 

Authentication and Reputation based Anomaly Detection 

The DBM component uses additional data to further monitor the behaviour of the device, this 

additional information is composed of time series data that comes from authentication logs and 

reputation score changes over time.  
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In the analysis process of such data, we aim to detect anomalies in said data, using anomaly 
detection techniques. Anomalies are data instances that have deviating characteristics from the 
baseline behaviour patterns. Most existing model-based approaches to anomaly detection 
construct a profile of normal instances, then classify data points that deviate from the normal 
profile as anomalies. There are many notable examples of ML based methods such as supervised 
methods, semi-supervised methods, and unsupervised methods.  

The most appropriate method that helps the implementation of a completely autonomous anomaly 
detection system based on authentication inputs is the unsupervised method, which enables us 
to detect anomalies without having to train a machine learning model a priori. As for the reputation 
inputs, the component employs a crisp classification method based on different levels of 
reputation. 

One such algorithm that detects outliers is Isolation Forest [43]. Isolation Forest is a popular 
unsupervised learning algorithm that identifies anomaly by isolating outliers in the data and is 
based on the Decision Tree algorithm.  

In general, the first step to anomaly detection/unsupervised learning is to construct a profile of 
what's the baseline behaviour, and then detect any instances that are not considered normal as 
anomalous. However, the Isolation Forest algorithm does not work on this principle, it does not 
first define "normal" behaviour, and it does not calculate point-based distances, which is why it is 
not necessary to pre-train the model with the baseline behaviour. Instead, it works by explicitly 
isolating anomalous points in the dataset. The main presumption in Isolation Forest algorithm is 
based on the principle that anomalies are observations that are few and different from the rest of 
most data points. Thus, Isolation Forest uses an ensemble of Isolation Trees for the given data 
points to isolate anomalies. 

eXplainable Artificial Intelligence (XAI) 

There are many factors that could contribute to how a model operates and makes its predictions 
and, therefore, many ways to explain it. The XAI methods can be classified using two dimensions: 
stage and scope. An explainability method can be applied through the several stages of an AI 
development model. The scope of the explainability method can either be global, where the 
method provides an explanation global with respect to the model, or one that is local, with respect 
to a prediction. There are two main categories of model approaches to explainability: intrinsic 
(modelling explainability) and post-hoc (post-modelling explainability) [51]. Intrinsic models are 
interpretable models such as decision tree or rules. Post-hoc is related to extracting the 
information from already taught models and it does not precisely depend on how the model works 
- hence it is model-agnostic, or if applied on a Deep Learning (DL) model, model specific. 

Although XAI is a research field with substantial active research, it is mainly focused on fields like 
healthcare, natural language processing, computer vision, etc. The interpretability methods are 
seldomly used for intrusion detection. Nevertheless, despite intrusion detection systems 
becoming more complex, some works to improve the interpretability of such models have been 
already produced. For instance, M. Wang et al. [44] proposed a framework that leads to improve 
the transparency of any IDS, presenting the first use of SHAP to provide local and global 
explanations for intrusion detection. 

S. Patil et al. [45] proposed an innovative intrusion detection system, using ensemble methods of 
machine learning and incorporating LIME (i.e., a XAI method) for better explainability and 
understanding of the black-box approach to reliable intrusion detection. The experimental results 
confirm LIME is more explanation-friendly and more responsive. 

D. L. Marino et al. [46] presented an approach to generate explanations for incorrect 
classifications made by data-driven IDS. An adversarial approach is used to find the minimum 
modifications (of the input features) required to correctly classify a given set of misclassified 
samples.  

S. Mane et al. [47] have used deep neural network for network intrusion detection and also 
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proposed explainable AI framework to add transparency at every stage of machine learning 
pipeline. The explanations are generated from SHAP, LIME, Contrastive Explanations Method 
(CEM), ProtoDash and Boolean Decision Rules via Column Generation (BRCG). The approaches 
were applied to NSL-KDD dataset for intrusion detection system (IDS). 

Even though previous work uses XAI methods for intrusion detection, it focuses on the part of 
providing explanations. On the other hand, we went further and explored the explanations, 
analysing and validating them, obtaining concrete results on the importance of different features 
for different scenarios.  

3.2.2.2 Research findings and achievements 

System Call Intrusion Detection 

The approach followed for the development of the DBM component has started with the validation 
of Machine Learning (ML) models on an open-source system call dataset known as ADFA-LD 
[48]. This dataset was used to validate ML classifiers and consequently the approach chosen for 
the classification of system call sequences. The results obtained with that dataset are 
demonstrated in the following sections.  

Our approach to train and test models for Host Intrusion Detection System (HIDS) relies on 
system log events, in this case system calls. Since we are developing an anomaly detection 
system, training data must contain baseline and attack data. Two approaches were evaluated 
and compared: a centralized and a federated approach. 

The proposed training architectures are a centralized model and a decentralized FL-based 
approach, where each of the nodes represented IoT clients. The main idea of this approach is to 
establish a comparison between the traditional IDS approaches and the federated setting, where 
the centralized architecture serves as baseline. 

The applied methodology for the development of the IDS is divided mainly into two parts. The first 
one is an offline (i.e., non-deployed) approach. In this case, the goal is to validate the use of ML 
classifiers in the process of intrusion detection using system call sequences.  

On the second part, we collected and aggregated the data from emulated devices, processed it 
and then trained the models with said data, with both normal and abnormal device behaviours. 
Regarding performance indicators of accuracy, F1-score, false positive rate, and true positive 
rate, the models that perform better are the Random Forest and the Multilayer Perceptron (MLP) 
as seen in Table 8. However, we have opted for the MLP for two reasons. Firstly, considering the 
size, the MLP stands out as the preferred choice due to its lightweight nature compared to the 
other models. Additionally, the challenge of aggregating parameters from traditional machine 
learning classifiers, such as the Random Forest, prevents their use in an FL-based approach.  
We then proceeded to develop the system that functions in online (i.e., deployment) mode as a 
system that is continuously monitoring the device. The detailed architecture of the system is 
depicted in Figure 21. 
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Figure 21 - Detailed architecture of the system call-based HIDS solution 

 

The starting point of the system is the data extraction/tracer module, typically deployed directly 
on the devices (in edge cases the system calls can be relayed to this component when the 
deployment directly on the device is not feasible). This module collects and aggregates the 
system call traces, which are going to be processed and then are going to be the subject of 
automated analysis by a ML model unit that classifies the input as anomalies or normal, and then 
raises an alert when an anomaly is detected.  

The proposed training architectures are a centralized model and a decentralized FL-based 
approach, where each of the nodes represent IoT clients. The main idea of this approach was to 
establish a comparison between the traditional IDS approaches and the federated setting, where 
the centralized architecture served as baseline. 

The considered approach is based on continuous analysis of system call flows in devices, by 
capture of dynamic properties of processes running on the system. Thus, system call traces of 
running processes are extracted and analysed. The use of system call sequences for generating 
models that detect normal and anomalous sequences is justified by the fact that security violations 
on device level are likely to produce abnormal system call invocations. System calls are the only 
means by which a program operating in user space can enter kernel space and make use of the 
services provided by the kernel. The user space processes running on the Operating System 
(OS) make system calls to request services from the kernel. 

In the last step, the system call sequences are generated. Each line of the recorded trace file 
represents a log related to a system call, process name, process ID, name of system call, related 
parameters, and return value. The system call names and associated process ID were extracted 
from each of the logs, and converted into system call numbers by referring to the system call table 
for the specific Linux version that was used, as each system call has a distinct numeric reference.  
The resulting data that was extracted is composed of system calls, each executed system call 
per line. These sequences need to be treated and processed to have a structured dataset that 
can be used for training Machine Learning models. In this step, we first tokenize the system calls 
into sequences of variable length.  
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For instance, considering the following snapshot of system calls recorded on a normal setting:  

open(), mmap(), read(), socket(), mmap(), execve(), open(), read(), close(), brk() 

With a sequence size of 5, the following subsequences would be produced by the sliding window 
method of size 1:  

• Sequence 1: open(), mmap(), read(), socket(), mmap() 

• Sequence 2: mmap(), read(), socket(), mmap(), execve() 

• Sequence 3: read(), socket(), mmap(), execve(), open() 

• Sequence 4: socket(), mmap(), execve(), open(), read() 

• Sequence 5: mmap(), execve(), open(), read(), close() 

• Sequence 6: execve(), open(), read(), close(), brk() 

After the tokenization process, the data is sanitized by removing the intersecting rows 

(sequences) from both normal and attack datasets to maximize the distinction between the two 

class types for the learning process. A row with a normal sequence is set with a label of 0, whereas 

a row with an anomalous sequence is set with a label of 1. This is followed by a feature extraction 

process. This process can be done through various other approaches, in this work we evaluated 

the following three approaches: Trivial Representation, Vector Space Model and Term 

Frequency–Inverse Document Frequency. The Feature Extraction step results in 2805 features, 

represented as n-grams (tuple of n words where n is 2). After performing the Feature Extraction 

step, the 150 most relevant features are selected through a PCA-based Feature Selection. The 

resulting dataset is then divided into a 70/30 split for training and testing, respectively. 

Authentication Log Analyser 

The Device Behaviour Monitoring component also considers failed authentication attempts 
associated to the current device (matched via device ID).  

It considers the timestamps of the failed authentication attempts and process their timestamp 
values in consecutive, sliding windows of size 10, in which time differences between two 
consecutive failed authentication timestamps and corresponding mean and standard deviation 
are calculated within that window.  The means and standard deviations for each of the windows 
are then analysed by an Isolation Forest model, to detect anomalous authentication events, 
possibly linked to cyberattacks. If such events are detected, is sends a threat alert to the 
respective external interfaces (see section 3.2.3.3) for further actions. 

Reputation Score Analyser 

The device Behaviour Monitoring component keeps the history of the reputation score changes 
over time, and reports when a sudden change in reputation happens via change point detection. 
For reference, change point detection detects the data points where the underlying properties, 
such as statistical characteristics (e.g., mean and variance) of the time series shift abruptly (Figure 
22 shows an example of data point jumps detection). 

Reputation Scores Usage in DBM 

Reputation scores of the device are also considered in various processes of the Device Behaviour 
Monitoring component. This is reflected in the decision process of sending the detected anomalies 
in collected system calls sequences based on the current reputation score of the device. In other 
words, when an intrusion is detected via system call analysis (and only for system calls 
anomalies), the component will decide if it will send the alert via the RabbitMQ based on the latest 
reputation score update and the confidence score given by the Machine Learning model. For 
example, an alert is sent in the following conditions: 

• Confidence level is at least 0.9 and device score is either at most 0.5 or at least 0.9. 

•  Confidence level is at least 0.7 and device score is at most 0.3. 
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•  Confidence level is at least 0.95, regardless of the device score. 

 

Figure 22 - Example of change detection 

Model Explainability 

In order to address the model explainability, two XAI methods were applied: LIME and SHAP. 
The methods are model-agnostic and enable local explanations. For every instance of the 
dataset, explanations were provided using both methods. With the explanations, the 10 most 
important system calls for each instance classification were retrieved. This is, if the classification 
of a particular instance was 0 (normal), LIME and SHAP would provide the 10 most important 
system calls for that classification, present in the input sequence. It is noticeable that LIME and 
SHAP might have different results. Based on these results retrieve system calls that are present 
only in the explanations of particular cases (for instance system call “x” being present only in 
cases where the result is a true positive). With the explanations provided by these methods, it 
becomes easier/faster to interpret the results of the model. In order to evaluate and validate the 
results of the XAI methods, perturbation analysis was carried out. With it, we were able to obtain 
results about the impact of different system calls on different scenarios. All these results can be 
observed in the next sections. 

3.2.2.3 Produced resources 

The following functionalities are the result of the research and development performed over the 
Device Behaviour Monitoring component: 

• Data Extraction Module: The starting point is the extraction of device logs in real time. This 
module extracts system call logs with the perf Linux tool [49] of the host device in real 
time. Figure 23 presents an example of a raw system call log extracted with the perf tool 
(it is also possible to use strace). The logs are parsed and the relevant information from 
the log is extracted, such as the invoked system call, the process ID and the service which 
invoked the system call. The extracted information from each log is stored in a local 
database, with the data being processed by the following subcomponents. 
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Figure 23 - Example of a raw system call log extracted with perf 

 

• Data Preparation Module: In this step, the collected system call trace is processed. First, 
each system call is converted into a numeric equivalent. It is followed by a Feature 
Extraction step, where methods such as TF-IDF and N(2)-gram are applied in order to 
create a feature vector. Since the resulting vector is sparse, a Feature Selection method 
is applied, reducing the dimensionality of the input. 

• ML Model: The resulting data is then sent as input to a Machine Learning (ML) model, 
more specifically to a MultiLayer Perceptron (MLP) model, for event classification. The 
model classification consists of a binary output, where 0 represents a benign behaviour 
and 1 represents malicious activity detected. Both outputs are presented with the 
respective confidence level. 

• Event Handler: This subcomponent considers the output of the ML model, which is then 
forwarded to the RabbitMQ exchange pertinent and redirected to the relevant ARCADIAN-
IoT components (e.g., CTI or Reputation System) or send to the Device Self-Protection 
(via inter-thread communication). 

The developed code (written in Python3) and respective packages are available on the GitLab 
repository [50]. 

3.2.3 Design specification 

This section considers the logical architecture view, where we describe the internal and external 
interfaces of the component, the sub use cases, sequence diagrams, deployment architecture 
model, interface description and resultant technical solution.  

3.2.3.1 Logical architecture view 

The Device Behaviour Monitoring oversees the security aspect on device level, this section 
presents the logical view of the internal and external interfaces which compose the component at 
hand. Figure 24 illustrates the logical architecture that follows the Device Behaviour Monitoring 
component, of both internal and external interfaces. 
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Figure 24 - Behaviour Monitoring component architecture 

 

The internal workflow of the component is composed of the following sub-components: 

• System Calls Analyser: Analyses sequences of system calls to detect anomalies, possibly 
linked to intrusion attacks. 

• Authentication Analyser: Analyses sequences/time series of failed authentication events 
in search for possible brute force attacks. 

• Reputation Analyser: Analyses sequences of reputation updates to detect abnormal, 
sudden changes in reputation scores. 

Within the System Calls Analyser, we have the following elements: 

• Data Extraction: Continuously extracts raw data directly from the device pertinent to 
user/device activity (e.g., system call traces) with the perf (or strace) Linux based tool for 
system call log activity (for Linux based devices). 

• Data Preparation Module: The extracted raw data from the device and data from other 
ARCADIAN-IoT components (described in the external interfaces) is processed by this 
module and then sent to the detection ML model, which produces a classification of either 
normal or anomaly (from the input data). 

• ML Module: The data from the Data Preparation Module is forwarded to the ML models 
that will indicate if it is an anomaly or not. If an anomaly is detected from the event traces, 
then the model will (when possible) classify what type of anomaly occurred. 

• Event Handler/Alarm: The resulting classification of the anomaly detection module will be 
packaged along with other information, such as the level of confidence, process affected, 
and the service/program associated to the process. The report of the classification result 
to external interfaces is decided based on the reputation score of the device and the 
confidence level of the result (see above, in “Reputation Scores Usage in DBM“ section 
3.2.2.2). 

 

The Authentication Analyser works similarly (in general) to the System Calls Analyser, in that the 
purpose of the Data Preparation and the ML Model elements are mainly the same. However, 
information regarding authentication is received from the Event Handler which, in turn, received 
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them from Authentication external interface. Additionally, contrary to the previous model, any 
anomalies in the Authentication are always sent. 

 

The Reputation Analyser, as explained in the section 3.2.2.2, receives and analyses the history 
of reputation changes of the devices. Just like the Authentication Analyser, whenever it detects a 
sudden change, it reports it immediately. 

3.2.3.2 Sequence diagrams  

The sequence diagram in Figure 25 depicts the expected sequence of events in case of a security 
incident. The Device Behaviour Monitor component starts by examining the system call traces 
extracted from the host device. Whenever an anomaly is detected in the device's behaviour by 
the IDS model, an alert is generated by the Event Handler subcomponent (which is responsible 
for processing incoming and outcoming information) and forwarded to other ARCADIAN-IoT 
components, namely, the Device Self-Protection, Reputation System and CTI.  

 

Figure 25 - Device Behaviour Monitoring Sequence Diagram 

Furthermore, additional information related to the device at hand can be used in the process of 
classification of the events, such as the authentication events and device scores from the 
Reputation System. 

3.2.3.3 Interface description 

The external interfaces are the following: 

• Alerts: Interface that will provide the results of the attack detection. It will use a protocol to 

send the alerts to a publication/subscription middleware via RabbitMQ or inter-thread 

communication. Other components such as the CTI, Device Self-Protection and 

Reputation system can then subscribe to such alerts and act accordingly. 

• Reputation System: Interface designed to receive reputation updates (acting as a 

weighted input for the intrusion detection models) from the Reputation System and to send 

relevant alerts about device’s behaviour to that component. 

• Federated AI: Access to Federated AI libraries for data rebalancing, which provides a 

mechanism to rebalance and fit non-Independent and Identically Distributed (non-IID) data 

to the framework by rebalancing the classes within a dataset, in the particular case of 

Behaviour Monitoring, balance the two classes (normal and anomalous behaviour). 
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• Authentication: Interface used to receive authentication results from the Authentication 

component (e.g., consecutive authentication attempts) 

 

The following table details the external interfaces: 

Partner Definition Channel Exchange 

IPN Device Self Protection 

RabbitMQ   

AMQP 0.9.1 
and Inter-thread 
communication 

Threat/intrusion 
detection warnings 

UC Reputation System 
RabbitMQ 

AMQP 0.9.1 

Threat/intrusion 

detection warnings 

RISE CTI 
RabbitMQ 

AMQP 0.9.1 
Threat/intrusion 

detection warnings 

UC Reputation System 
RabbitMQ 

AMQP 0.9.1 
Reputation updates 

RISE Federated AI 
Direct Code 
Integration 

Data Rebalancing 
Libraries 

1GLOBAL 
Multi-Factor 

Authentication (MFA) 
RabbitMQ 

AMQP 0.9.1 
Authentication Updates 

Table 7 – Device Behaviour Monitoring External Interfaces 

3.2.3.4 Technical solution 

3.2.3.4.1 Deployment architecture view 

 

The Device Behaviour Monitoring (DBM) component enables two main types of deployment. The 
first type of deployment (Figure 26), refers to a solution that is deployed directly on the device, 
drone or smartphone, which includes all subcomponents of the Device Behaviour Monitoring. The 
second type of deployment is deployed in the cloud or any other premise (Figure 27). The device-
related information is sent via RabbitMQ to component, which processes the data. 
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Figure 26 - On device deployment architecture view 

 

 

Figure 27 - Remote deployment architecture view 

 

3.2.3.4.2 API specification 

The Device Behaviour Monitoring component utilizes a RabbitMQ publish/subscribe model for 
exchanging information with other ARCADIAN-IoT framework components. It receives messages 
to analyse and sends messages with threat information, related to detected anomalies, to other 
components. The content of the messages sent, which detail the identified anomalies, vary 
depending on the nature of the anomaly, whether it's in system call sequences, an authentication 
anomaly, or a reputation anomaly. Table 8 specifies these details. 
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Messa
ge 

Format 
Parameters Type Description Format 

JSON 

timestamp  string 
Current system 

time 

Unix Timestamp (in seconds) (e.g., 

1666620456) 

attack_start_date string 
Time when attack 

was first detected 

Unix Timestamp (in seconds) (e.g., 

1666620456) 

deviceId string 
arcadian_iot_ID 

of the device 

Source:ID (e.g., ipn:3a45d35a-

2494-407b-b8c9-adf39834a38f 

cause string 
Program/Service 

that was attacked 

Service name (e.g., SSH, FTP, etc) 

processId string 

Process ID 

associated to the 

program 

ID number of the process (e.g., 

9346) 

Sender string 

Identification of 

sender 

component 

<domain> <component> <location>

 <entity_id> <service> 

start_timestamp string 

Timestamp of the 

first failed 

authentication 

Unix Timestamp (in seconds) (e.g., 

1666620456) 

end_timestamp string 

 Timestamp of the 

last failed 

authentication (in 

the same window) 

Unix Timestamp (in seconds) (e.g., 

1666620456) 

occurence_number int 

number of 

intrusions 

detected in the 

processId 

A positive integer number. 

currentScore float 

Current reputation 

score of the 

device 

A real number between, and 

including, 0 and 1 

previousScore float 

Current reputation 

score of the 

device 

A real number between, and 

including, 0 and 1 

confidence_level float 
Model prediction 

confidence level 

Float value from 0 and 1 (e.g., 0.55, 

0.87, 0.98) 

Table 8 - Device Behaviour Monitoring Output Specification 

 

3.2.3.4.3 Security aspects 

In addition to the inherent specificities of the component, is worth mentioning that the Device 
Behaviour Monitoring seeks to maximise the privacy of the devices targeted by the component. 
This is achieved by applying Federated Learning mechanisms when a model update is needed, 
this means that, device data is not shared with outside entities, as only the model parameters of 
the local device model are shared with a centralised server that performs model aggregation, 
keeping data secure and private. 
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Furthermore, the communication with other ARCADIAN-IoT components via RabbitMQ is 
authenticated – adding an additional security layer to the underlying operations of the component. 

3.2.4 Evaluation and results 

3.2.4.1 Model Performance 

To evaluate the performance of the developed ML models and demonstrate the effectiveness of 
the proposed approach as it relates to the defined target KPIs, four performance metrics were 
selected. The performance of an IDS can be measured with the following metrics: 

• Accuracy - The accuracy refers to the percentage of all those correctly predicted events 
in relation to all predictions. 

• True Positive Rate (TPR) - TPR is the ratio of the number of correctly classified intrusions 
and the total number of true positives. 

• False Positive Rate (FPR) - FPR is the ratio of the number of normal events predicted 
incorrectly as an intrusion and the total number of events. 

• F1-score - Weighted average of the precision and recall. 
 
Table 9 shows the performance of different machine learning algorithms on ADFA-LD dataset 
regarding performance indicators of accuracy, F1-Score, false positive rate, and true positive rate. 

 

Algorithm Accuracy TPR FPR F1-Score 

Logistic Regression 0.93 0.92 0.08 0.93 

KNN 0.86 0.99 0.26 0.86 

Decision Tree 0.97 0.97 0.04 0.97 

Random Forest 0.99 0.98 0.02 0.98 

SVM 0.96 0.94 0.06 0.96 

Naive Bayes 0.73 0.82 0.36 0.72 

Neural Network (MLP) 0.98 0.97 0.02 0.98 

Table 9 - Model Training Results  

 

Additionally, the application of the federated approach was also tested with the ADFA-LD dataset. 
In the evaluation of FL algorithm, two types of approaches were taken. In the first, the training 
phase of the MLP model was performed with data that was distributed equally among a pre-
defined number of clients. In the second approach, the training phase is done with data that is 
randomly distributed among the clients. Table 10 shows the results obtained with the experimental 
work executed across both the scenarios. 

 

Algorithm Distribution Accuracy TPR FPR F1-Score 

FedAvg iid 0.96 0.97 0.03 0.96 

FedAvg non-iid 0.92 0.91 0.07 0.92 

WeightedFedAvg iid 0.96 0.97 0.03 0.96 

WeightedFedAvg  non-iid 0.95 0.94 0.03 0.95 

Table 10 - FL Model Training Results 
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Based on the values obtained, we were able to achieve similar results (i.e., slightly better) in 
comparison to the current state-of-art values for centralised training settings. Random Forest has 
showed to be 0.01% more accurate than the MLP.  

Due to the hidden layers, we expected that the Neural Networks would be more accurate, 
however, NNs are generally more accurate when datasets are larger. In this case, ADFA-LD is 
large enough for a traditional ML algorithm to perform accurately, however it is not of an ideal size 
for the MLP.  

Additionally, when the model is trained with the federated setting, the accuracy drops down to 
around 96% with Weighted Federated Averaging algorithm in comparison to the 98% when 
trained in a centralised setting. 

3.2.4.2 Model Explainability 

 

On an overall analysis of the results, it was possible to observe that there are system calls that 
only appear, for example, in the explanations of FN cases, and not in the explanations of TP 
cases, and vice versa. The same was observed for the FP and TN cases. The results and 
consequent system calls are represented in Figure 28. It is important to note that the represented 
results match with LIME and SHAP. 

 

 

Figure 28 - System calls that only appear in the explanations of particular cases. 

To evaluate and validate the explanations provided, we have induced perturbations based on the 
most important system calls. A system call that only appears, for instance, in the explanations of 
FN, was replaced with a system call that only appears in the explanations of the opposite case 
(i.e., TP). The same was performed for the TN and FP cases. Some of the most interesting results 
are represented in Figure 28 and Figure 29. 

With the explanations provided by the XAI methods, and the perturbations that can be made 
according to the explanations, the interpretability of the model's results increase, and the 
cybersecurity personnel in charge of analysing the results might get insights into the model's 
behaviour, and what system calls might be having more impact for different scenarios. With the 
results, it can be concluded that there are system calls that might be causing a negative impact 
on the model's classifications. With the knowledge acquired about the model's behaviour in the 
presence of such system calls in the input sequences, the cybersecurity personnel in charge of 
the analysis of the results might have a different perspective on what might be wrong. 
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Figure 29 - System calls that only appear in the explanations of particular cases. 

3.2.4.3 Computational Performance 

To evaluate the performance overhead when the intrusion system is deployed on an emulated 
resource restricted system, we first evaluated the average CPU usage over 30 minutes. During 
this period of time, the emulated system is not running any high demanding processes, which 
gave us a baseline to compare to when the IDS program is deployed. 
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Figure 30 - Device Behaviour Monitoring CPU Usage 

From the results we can observe that the more syscalls are continuously processed, the more 
CPU it requires. This means that if we intend to make the system less taxing on the device, we 
can always tune the amount of analysed system calls as a batch more limited. Nevertheless, we 
see that by increasing 10 times the number of system calls, we only see a 5% increase in CPU 
usage. In systems where this amount of CPU usage is not acceptable due to energy constraints, 
it is possible to disable the system call anomaly detector and still rely on the capabilities of the 
anomaly detector based on reputation and authentication inputs.  

3.2.5 Future work 

Since the component was finalised and integrated into various use cases within the three domains 
of the project, the subsequent work associated to this component, beyond the scope of the 
project, may be to focus on expanding integration capabilities (e.g., different operating systems 
and device types), adjusting the functionalities (e.g., supporting multi-class models) or supporting 
additional inputs for analysis. 

3.3 Cyber Threat Intelligence 

The design and development of the Cyber Threat Intelligence component is part of Task 3.4 
(Cyber Threat Intelligence for IoT systems) in WP3. 

3.3.1 Overview 

3.3.1.1 Description 

ARCADIAN-IoT intends to provide an instrument to gather, produce, elaborate, and share 
information regarding cyber threats and attacks in the IoT domain where end devices might be 
critically affected. The threat information is generally presented as Indicator of Compromise (IoC), 
and it can be shared between various partners to detect similar attacks in other organizations, or 
directly used to detect and analyse new security incidents. 

RISE has built up an IoT-specific Cyber Threat Intelligence (CTI) system based on Malware 
Information Sharing Platform (MISP),1 an open-source threat sharing platform, to orchestrate the 
process of (i) information parsing, formatting, and sharing, (ii) consuming and generating IoCs, 
and (iii) fetching feeds to CTI. Although MISP already provides a bunch of useful functionalities 
to administrate cyber threat data, there are still some critical features missing, such as, IoC quality 
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control, and automatization which would be useful in IoT environments. Understanding the 
quality/reliability of IoCs, having an appropriate level of contextualization in different organizations 
are challenging tasks. Thus, essential robust mechanisms are needed. Additionally, exploiting the 
Federated AI Component (Section 2.2), ML-based models enable the sharing of IoCs among 
multiple instances in a privacy-preserving manner. CTI platform will enable the direct use of IoCs 
for anomaly detection, intrusion detection and prevention, and designing of novel protection 
mechanisms. 

An IoT-specific CTI is responsible for collecting, processing, and sharing IoCs regarding to cyber 
threat within IoT network. Different features have been identified as needed for the essential 
functionalities to meet the use case requirements in ARCADIAN-IoT.  

3.3.1.2 Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 [2] is given below. 

Requirement 3.3.1 – Threat data collection: The CTI should be able to collect threat data from 
various sources, local and internal sources (wide variety of various sources). 

Requirement 3.3.2 – Private information: The CTI may need to share information about 
compromises; Local intelligence in application to not disclose sensitive/confidential information 
belonging to users or company. 

Requirement 3.3.3 – Indicators of Compromise: The CTI should support Indicator of Compromise 
(IoC) generation and sharing by any participating IoT or edge device. 

3.3.1.3 Objectives and KPIs 

The aim of the ARCADIAN-IoT project is to provide a MISP-based CTI platform focused on IoT-
specific threat intelligence. With the aim of fulfilling the project’s objectives, the CTI will be 
evaluated against the following KPIs: 

 

KPI scope  

Enable the aggregation and processing of IoCs generated by internal or external sources 
 

Measurable Indicator 

Number of the types of threat managed 
Number of different IoC formats supported 

Target value Achieved value 

# types of threat > 5 
# IoC formats > 3 

# types of threat = 12 
# IoC formats = 4 

 

KPI scope  

Provide ML models for automated IoC clustering 

Measurable Indicator 

Purity, Silhouette Coefficient, Normalized Mutual information 
 

Target value Achieved value 

Purity > 70% 
Silhouette Coefficient > 0.7 [-1, 1] 
Normalized Mutual information > 0.7 [0, 1] 

Putity ~= 89.86% 
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Silhouette Coefficient ~= -0.133116 
Normalized Mutual information ~= 0.7864 

 

KPI scope  

Provide ML models for automated IoC ranking 

Measurable Indicator 

NDCG, MAP@10, Precison@10 

Target value Achieved value 

NDCG > 80% 
MAP@10 > 80% 
Precison@10 > 80% 

NDCG = 98% 
MAP@10 = 100% 
Precision@10 = 100% 

 

KPI scope  

Provide ML models for automated Event/Galaxy classification 

Measurable Indicator 

Accuracy, F1-score 

Target value Achieved value 

Accuracy > 85% 
F1 > 0.85 

Evaluated with 3 datasets: 
Average accuracy:  89.44% 
Average F1 score: 0.8807 

 

3.3.2 Technology research 

3.3.2.1 Background 

Despite technologies, tools, and best practices for threat data sharing are quite consolidated, 
automated processing of CTI platforms is an area where research is still advancing, especially in 
sectors including critical services, such as healthcare, banking, energy, and transportation. Along 
with the growth of IoT, several ongoing projects and standardization activities are working on new 
lightweight IoT security protocols, secure connectivity of IoT with cloud backend, distributed trust 
in IT, etc. However, CTI focused on IoT is a relatively immature discipline; in fact, most current 
CTI platforms focus on standard internet hosts. 

MISP  

ARCADIAN-IoT CTI system leverages on MISP platform. In MISP, the structure of shared 
information is well-defined. The terminology in MISP can briefly be categorized into two classes: 
data layer and context layer. The former includes all the terms related to how the information is 
defined in MISP; the latter includes the terms referred to the relationship between different 
clusters of information. In details, the data layer contains: 

• Event: The encapsulation for contextually linked information represented as attribute and 
object 

• Attribute: The individual data points, which can be indicators or supporting data 

 

 

16 The silhouette coefficient measures the distance between clusters at the end of the clusterization. The 
low silhouette coefficient in this case is due to the type of dataset utilized in the experiments, which are with 
high dimensionality and causes a high number of clusters so that the distance between them is too close.   
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• Object: The custom template for attributes 

• Object reference: The relationship between other building blocks 

• Sighting: The time specific occurrences of a given data-point detected. 

And the context layer includes: 

• Tags: The labels attached to events/attributes from taxonomies 

• Galaxy-clusters: The knowledge base item used to label events/attributes and come from 
Galaxy 

• Cluster relationship: The relationship between Galaxy clusters. 

The IoC, which is a piece of information that helps Intrusion Prevention/Detection Systems and 
their administrators to detect suspicious or malicious cyber activities, can be generated based on 
this data structure. IoC usually involves different attributes related to the object of an event, and 
it can be represented as network indicator (e.g., IP address), system indicator (e.g., string in 
memory), or bank account detail. However, there are no events, attributes, and objects yet 
specifically designed for IoT contexts. By analysing the three project domains and their specific 
requirements, we are able to define a uniform set of IoT-specific events, attributes, objects to 
include in IoT-specific IoCs.  

STIX and TAXII 

The Mitre Corporation’s efforts on structured threat information expression (STIX) and trusted, 
automated exchange of indicator information (TAXII) are prominent Cyber Threat Intelligence 
(CTI) frameworks and platforms that are being used today [i]. In general, CTIs represent Indicator 
of Compromise (IoC) for formalizing and/or representing threat actors and attack-vectors. STIX is 
the most prominent and preferred CTI framework being used by hundreds of CSOs worldwide 
nowadays, for protecting enterprises, institutes, national assets, etc. against Advanced Persistent 
Threats (APTs) by sharing attack specific IoC amongst peers. The main question we are seeking 
answers to in this work is this: 

“How can we adapt this technology to the IoT with the requirement of less energy consumption?” 

Each STIX object is on average hundreds of bytes on the disk, which might be considered 
negligible for traditional networks. However, in the case of an IoT network, if several IoC ‘s need 
to be broadcast per day, then might significantly increase the overall power consumption of the 
network, as it is measured at milli-Watts range. Hence battery level of the end-devices is the most 
important constraint in IoT networks, we need to find a way to decrease the STIX message size 
to be transmitted over. 

STIX v2 is in JavaScript Object Notation (JSON) format, compared to the earlier version (STIX 
v1) which was in eXtensible Markup Language (XML) format. As such, all CTI information related 
to IoCs are represented in JSON file format consisting of STIX object(s) fields. 

Trusted Automated Exchange of Intelligence Information (TAXII) is a platform devised for 
automated CTI sharing based on STIX message formatting. The features include: 

• Negotiations and authentications is based on HTTP protocol  

• Existing protocols are exploited by TAXII whenever possible 

• DNS service records are used to discover TAXII servers within a network 

• All TAXII exchange types use JSON (UTF-8 encoded) as serialization format 

• All TAXII communications are transported via HTTPS 

3.3.2.2 Research findings and achievements 

Preliminary adaptations of MISP platform for IoT 
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Through the MISP platform, a user can manually insert, edit, delete, and search for events or 
objects. Users also can define how to share the information by selecting one of multiple 
approaches provided by MISP, e.g., a user may define the profile of the organizations with which 
the information will be shared and the sharing time frame. The information included in the shared 
IoCs is constrained by the IoT-specific context and fulfils the requirement of threat data required 
by other components in the framework (MISP4IoT). MISP platform has been extended with 
automatic control functionalities (e.g., automatic insert, edit, delete, search). For example, we 
provide an API for automatic creation of threat events when an IDS event is raised by the 
flow/Behaviour Monitoring component.  

The new functionalities have been implemented in Python by utilizing PyMISP library. PyMISP 
provides essential REST APIs to access to MISP platform. It allows us to develop automatic-
control functions of MISP, and these functions are essential for future exploitation of the others 
subcomponents in CTI platform. Through these functions, the threat data can be automatically 
added, updated, deleted. The necessary information includes CTI platform’s IP address, the 
content of attributes to the defined object, and the authorized key, and some additional 
parameters (e.g., threat level, distribution, IDS flag, etc.).  

TinySTIX and TinyTAXII for CTI in IoT 

Besides the implementation, we have investigated the most suitable data formats and 
communication protocols for IoT domains. Starting from the well-known language and 
serialization format STIX (Structured Threat Information Expression), which is an open-source 
format and integrates well with MISP for exchanging CTI data, we implemented a simplified and 
lightweight version of it to exchange threat data within IoT domains. This format helps us easily 
contributing to and consuming from the CTI platform as all dimensions of suspicion, compromise, 
and attribution can be emphasized with descriptive relations along with the object identifiers. It is 
presented as JSON, which is a machine-readable format, and it can be visualized in a graphical 
representation. On the other hand, we exploit the TAXII (Trusted Automated Sharing of 
Intelligence Information) protocol, which was designed to support STIX, in order to tailor the 
methods used for sharing cyber threat information in the three ARCADIAN-IoT domains. 

RISE has also investigated approaches of reducing STIX message size so that to represent it in 
a compact and IoT-friendly form. As such, a new lightweight STIX format, called TinySTIX, was 
defined. First, some specific filtering of the required and optional fields of the STIX objects, 
represented as binary listings, has been performed. For example, the “type” field of the STIX 
objects can be applied with Binary Listing methodology to reduce the size. (e.g., after applying 
the binary listing methodology to the type field of the STIX objects with the TinySTIX, we now 
have a size reduction rate of 1.85%). There are more fields are available to be applied with binary 
listing method, such as “spec version”: Version of the STIX framework, “indicator types”: Mentions 
the type of the IoC,  “relation type”: Mentions the relation of the IoC, “pattern type”: Mentions the 
pattern type of the IoC, “pattern version”: Mentions the pattern version of the IoC, “malware types”: 
Mentions the malware type associated with that specific IoC.  

On the other hand, some specific selection of the required and optional fields of the STIX objects 
can be represented in an encoded or shortened format. As an example, we argue that the IoT 
devices do not generate precise timing and their representing IoCs do not need to have milli-
seconds precision and can be shown only in seconds. We observed that, even such a small trick 
saved us 24 bytes space in the overall message size which is equivalent to 2.2% size reduction. 
A new lightweight TAXII format, named TinyTAXII, is also proposed which uses CBOR 
serialization rather than JSON serialization, and help reducing the packet sizes around 25% on 
average. The Concise Binary Object Representation (CBOR) is a data format whose design goals 
include the possibility of extremely small code size, fairly small message size, and extensibility 
without the need for version negotiation. 

ML-assisted processing for CTI management 
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RISE has investigated the use of ML to solve three key challenges in CTI processing and 
management for IoT: prioritizing and ranking received Indicators of Compromise (IoCs) based on 
their severity, likelihood of exploitation, and potential impact; classifying the IoCs based on the 
type of attacks or threats; and aggregating IoCs with similar characteristics into clusters. 

With this objective, RISE has extended the popular open-source CTI platform MISP (Malware 
Information Sharing Platform) to include ML functions. Our extension integrates three types of ML 
models for IoC ranking, classification, and clustering. 

RISE has defined and developed three different ML-based modules to be used for smart IoCs 
processing and analysis: (i) threat ranking, (ii) event classification, and (iii) IoC clustering.  

More details about each component of the CTI system are provided in the logical architecture 
view in Section 3.3.3.1. 

3.3.2.3 Produced resources 

A research paper on the CTI system and the obtained results is currently being peer-reviewed at 
the time of writing this deliverable. The source code of the system will be made publicly available 
in the ARCADIAN-IoT public repository when the paper is accepted. 

3.3.3 Design specification 

3.3.3.1 Logical architecture view 

 

Figure 31 - The architecture of CTI 

Figure 31 shows the architecture of CTI which consists of: an IoC parser, a threat ranking module, 
a threat classification module, an IoC clustering module, a data aggregator, the MISP engine, and 
a database specifically dedicated to storing IoCs in MISP format. Each subcomponent is in charge 
of different tasks.  

• The IoC parser is responsible for processing and extracting relevant information from the 
IoCs received from different sources (internal and external). 

• Data Sample Generation: after processing the IoCs, the parser generates a data sample 
for each IoC instance containing the extracted information. This data sample serves as 
input for the three ML-based modules. This step involves feature extraction and data pre-
processing which are also required in the ML model training. 

• The threat ranking module is trained to prioritize and rank the received IoCs based on 
their severity, likelihood of exploitation, and potential impact. If the rank value is missing 
from the data sample, the threat ranking module makes a decision on this specific feature. 
The module takes as input a data sample generated by the sample generator. Depending 
on the type of input, whether resulted from STIX or MISP formats, the threat ranking 
module selects a specific pre-trained unbiased Learning-to-Rank (LTR) model tailored to 
the respective data structure. In order to learn the threat level order of IoCs, we exploit 
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ranking algorithms.  

• The event classification module is designed to classify the type of threat, such as 
malware, phishing, or DDoS attacks. Its purpose is to assist with data samples that lack 
event names, which often correspond to unidentified malicious activities or instances with 
unknown events. This module has the capability to assign pre-defined names to the IoCs, 
thereby providing valuable insights and identification for previously unclassified threats. 
The module takes as input a data sample generated by the sample generator. Depending 
on the type of input, whether resulted from STIX or MISP formats, the event classification 
module selects a specific pre-trained classification model, among those pre-configured, 
tailored to the respective data structure. In the centralized setup, we can execute four ML-
based algorithms: DNN, CNN, XGboost, and RF. Instead, the setting with federated 
learning implements DNN and CNN. 

• The IoC clustering module is responsible for grouping similar IoCs together based on 
common attributes or behavior patterns. If the cluster value is missing from the data 
sample, the IoC clustering module makes a decision on this specific feature. The module 
takes as input a data sample generated by the sample generator. Depending on the type 
of input, whether resulting from STIX or MISP formats, the IoC clustering module selects 
a specific pre-trained unsupervised clustering model among those pre-configured, tailored 
to the respective data structure. The module assigns the input data sample to the 
appropriate cluster based on its similarity to the existing clusters obtained during the 
training phase. The inference first outputs a tag with the cluster ID assignment to the input 
IoC for the further use when the IoC is being shared. The IoC is not shared with the 
users/organizations that contributed. The inference output also includes a confidence 
score indicating the level of certainty in the cluster assignment. This score represents the 
similarity between the input IoC and the centroid of the assigned cluster. 

• Aggregation and MISP Conversion: the outputs from the three ML modules, along with 
the original input data sample, are aggregated together by the data aggregator. The 
aggregated data is then converted into MISP format. 

• MISP Database: the updated and converted data sample is stored in the MISP database, 
which is dedicated to storing IoCs in MISP format.  

• The MISP engine handles the sharing of IoCs in MISP format according to the approaches 
provided by MISP. Since the system is designed as an extension of the MISP platform, it 
inherits MISP’s concept of a “sharing group.” MISP engine also provides the graphic user 
interface (GUI) that displays threat intelligence. 

3.3.3.2 Sequence diagrams  

Figure 32 describes the sequence diagram of the CTI system which includes the functions for IoC 
parser and data generation, aggregator, threat ranking, event classification, IoC clustering, and 
MISP database. When the CTI system receives an alert from one of the ARCADIAN-IoT 
components or from an external source, the parser will extract its features and generate the data 
sample. If there is no threat level associated with the data sample, a threat level is automatically 
assigned by the ML-based threat ranker before being transferred to Aggregator. If the event is 
unlabelled, i.e. no event type is associated with the data sample, a label is automatically assigned 
by event classification module before being transferred to the Aggregator. A new tag, which is a 
cluster ID, is added to the data sample. Aggregator aggregates all the newly assigned features 
to generate IoC. The IoCs processed by the MISP core are then pushed towards the output API 
which delivers IoCs to the subscribers according to their tags/galaxies. 
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Figure 32 - Sequence diagram 

 

3.3.3.3 Interface description 

The external interfaces are the following: 

• Indicator of compromise: Interface that will share the IoC resulted from the CTI processing. 
CTI uses a protocol to send the alerts to a publication/subscription middleware via 
RabbitMQ. Other components such as the IoT Device Self-protection and Reputation 
system can then subscribe to such IoCs and act accordingly. 

• Behaviour Monitoring and Network Flow Monitoring send alerts as results of the attack 
detection. It uses a protocol to send the alerts to a publication/subscription middleware via 
RabbitMQ. CTI system subscribes to such alerts and processes the alerts for further 
analysis and aggregation. 

• Federated AI:  CTI have access to Federated AI libraries for data rebalancing; the 
component is used to rebalance the datasets in the federated communication. 

The following table details the external interfaces: 

Partner Definition Channel Exchange 

UWS 
Network Flow 

Monitoring 
RabbitMQ 

AMQP 0.9.1 
Threat/intrusion detection 

warnings 

IPN 
Behaviour 

Monitoring 
RabbitMQ 

AMQP 0.9.1 
Threat/intrusion detection 

warnings 
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IPN 
Reputation 

System 
RabbitMQ 

AMQP 0.9.1 
Indicators of Compromise 

IPN 
IoT Device Self-

protection 
RabbitMQ 

AMQP 0.9.1 
Indicators of Compromise 

RISE Federated AI 
Direct Code 
Integration 

Data rebalancer libraries 

Table 11 - The external interfaces of the CTI component 

 

3.3.3.4 Technical solution 

3.3.3.4.1 API specification 

CTI system is using a message bus publication/subscription channel to interact with the rest of 
the components in the ARCADIAN-IoT framework. This component uses two different exchanges: 
the first is for Reputation System, and the second is for Device Self-protection. These two 
components are receiving IoC from CTI component. As a second interface, the CTI component 
subscribes to the Network Flow Monitoring and Device Behaviour Monitoring to consume threat 
alerts to process in CTI system. The format of IoC is detailed in the following Table. The optional 
fields will be provided as  other components require. 

Output IoC Format (JSON) 

Name Description Type Requirement 

Timestamp Time when event was first created String mandatory 

Event_class The class information of the event String mandatory 

Threat_level The threat level of the event Integer mandatory 

Attribute_type The type of the information in the IoC String mandatory 

Attribute_value The value of the information/attribute String mandatory 

Attribute_comment The comment of the attribute String optional 

Source_Org The contributer of the event String optional 

aiotID ARCADIAN ID of a device (if available) String optional 

srcIP 
Source IP as provided by network flow 

monitor (if available) 
String optional 

dstIP 
Destination IP as provided by network 

flow monitor (if available) 
String optional 

 

3.3.4 Evaluation and results 

In this section, we evaluate and compare the performance of the selected ML models for each 
ML-based module. We first describe the processes of ground truth labelling, dataset preparation 
and model tuning that were implemented for evaluation. Then, we present the numerical results 
obtained from our evaluation. 
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We tested the three ML-based modules of the CTI system on three publicly available CTI 
datasets: (i) Mitre ATT&CK,17 (ii) CIRCL,18 and (iii) Botvrij.19 While the Mitre ATT&CK dataset 
comprises IoCs in STIX format, CIRCL, and Botvrij comprise IoCs in MISP format.  

The Mitre dataset does not provide threat levels for its entries. Therefore, we extract relevant 
information from the “target references” field defined in the relationship object of the STIX format 
to assign both threat levels and event categories. The “target references” consistently points to 
the attack pattern, which is a domain object containing Mitre-defined fields such as 
“kill_chain_phases,” “x_mitre_data_sources,” and “x_mitre_platforms,” among others. We extract 
numerical information from these fields. For instance, we assume that an attack pattern used on 
many platforms is more critical than others. Similarly, we consider an attack pattern with 
information provided by multiple data sources to have been discovered multiple times, making it 
more significant. The field named “kill_chain_phases” refers to the tactic information, such as 
credential access, reconnaissance, and so on. Each tactic has a various level of importance. By 
extracting and analyzing this information, our goal is to assign appropriate threat levels to the 
data entries, enhancing the evaluation of threat ranking in the Mitre dataset. In order to do this, 
we have assigned the weight for each field and determined the importance of tactics in the 
assignment of the threat level. For the evaluation of event classification, we use tactic information 
as the event categories. 

CIRCL and Botvrij datasets are both in MISP format and include the ground truth for the threat 
level. However, they do not provide event categories that can be used as ground truth for the 
evaluation of event classification. Therefore, we manually labelled the events by analyzing the 
information provided in the “attribute comment,” “event name,” and any other informative fields of 
the data instance. 

The three datasets used in this evaluation have been divided into training and testing subsets. A 
standard ratio of 70-30 train-test split strategy is employed, where a certain percentage of each 
dataset is randomly selected for training the ML models, while the remaining data is reserved for 
testing and evaluation. 

In the development of the ML-based models, we followed the default settings as defined by the 
applied APIs for most of the algorithms. These default settings serve as a starting point and 
provide a general configuration suitable for various tasks. However, when it came to neural 
networks included in the models, we encountered the need for parametrization and fine-tuning to 
optimize their performance for specific problems and models. 

In order to evaluate different ML-based tasks, different metrics are exploited to assess the model 
performance.   

We measure the effectiveness of an unbiased LTR model in terms of nDCG@10, which can be 
formulated as:  

$𝑛𝐷𝐶𝐺@10 =
{𝐷𝐶𝐺@10}

𝐼𝐷𝐶𝐺@10
⁡, where DCG@10 is the measure evaluating the quality of a ranking of 10 

items, and IDCG@10 is the ideal DCG@10, which is the DCG (Discounted Cumulative Gain) 
value of the best possible ranking of 10 items. 

For the event classification problem, we evaluate the accuracy; since the data is slightly 
imbalanced to several dominated classes, we additionally adopt Marco F1 score (FS-marco) and 
geometric mean (G-mean). 

Finally, the performance evaluation of the IoC clustering module is based on three metrics: 
homogeneity (HO), mutual information (MI), and rand index (RI). HO assesses whether a cluster 
exclusively contains instances from a single class, which is the purity of the cluster. MI measures 

 

 

17 https://attack.mitre.org/ 
18 https://www.circl.lu/doc/misp/feed-osint/ 
19 https://www.botvrij.eu/data/feed-osint/ 
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the similarity between two distinct sets, namely the labels and clusters. A higher MI value signifies 
a stronger correlation between the labels and clusters, indicating a more certain distribution. The 
rand index quantifies the proximity between two clusters.  

First, the performance of nDCG@10 and accuracy on test dataset for Botvrij, CIRCL, and Mitre 
datasets are evaluated. The results show DCG@10 values higher than 98% which indicates that 
we can expect the unbiased LTR algorithms to produce good ranking values. On the other hand, 
the accuracy results show that the unbiased LTR models can overall achieve over 82% accuracy 
among the three datasets. It shows the module can return the promising threat level.   

Second, we provide an overview of the overall performance of the classification models across 
three metrics on three datasets. A notable observation is that the ML models obtain relatively 
lower performance on the Mitre dataset compared to the other datasets. The highest accuracy 
achieved for the Mitre dataset is only 85% by the RF model, and FS-Marco also displays a similar 
value. It is due to the nature of the three datasets are different. In contrast, the rest of the datasets 
achieve higher accuracy levels, surpassing 90% for both accuracy and FS-Marco. This is likely 
due to the datasets containing less intricate and more clearly delineated threat event classes, 
enabling the ML models to perform better in classification tasks.  

Last, clustering models perform reasonably well, especially on the CIRCL and Botvrij datasets. 
The obtained HO value indicates that about 85% of the IoCs within a single cluster are related to 
the same labelled event, demonstrating the clustering model's effectiveness. MI shows that the 
clustered IoCs exhibit more than 75% correlation with the provided labels, further validating the 
performance of the clustering approach on these datasets. 

 

3.3.5 Future work 

Future work beyond the timeframe of WP3 could be dedicated to enhancing the overall CTI 
system. The primary objective will involve adjusting the CTI system to accommodate a wider 
range of data formats for IoC or threat alerts, as well as expanding the sources of data. 
Additionally, efforts may be directed towards exploring techniques for extracting threat intelligence 
from social media, utilizing pre-trained LLM (Large Language Model), and conducting further 
analysis on this data to generate valuable IoCs.   
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3.4 Network Self-protection 

The design and development of the Network Self-Protection component is part of Task 3.5 (Self-
healing and self-protection for IoT systems) within WP3 which addresses the horizontal plane of 
the ARCADIAN-IoT framework. 

3.4.1 Overview 

3.4.1.1 Description 

This component is responsible for providing the self-protection capabilities required by the 
ARCADIAN-IoT framework in the wired segments of the network (e.g., Core, Edge and 
Transport). This component has to enforce a set of protection policies into the software data plane 
with the aim of safeguarding and protecting the network infrastructure, the IoT devices, and the 
services against volumetric DDoS attacks. For this purpose, this component is hooked into the 
data plane providing an enhanced programmable enabler beyond the current state of the art able 
to enforce security policies by means of protection rules. The implementation is based on the 
well-known virtual switch OpenVSWitch (OVS) on which the UWS team is carrying out significant 
extensions and upgrades to support an enhanced programmability of the data plane to meet the 
expected requirements of the project. Thus, the component has been designed and implemented 
to cope with different data paths and network protocols related to IoT networks, overlay networks, 
or any other type of networks, scenarios and use cases involved in the ARCADIAN-IoT project. 

This component, in cooperation with the Network Flow Monitoring (Subsection 3.1) and the 
Network Self-healing (Subsection 3.6) components, performs an autonomous cognitive loop able 
to detect and mitigate known cyber-attacks (volumetric DDoS attacks). First, the Network Flow 
Monitoring detects the attack and raises an alert. This alert is received by the Network Self-healing 
that determines what action or set of actions needs to be executed to stop the attack (which rule(s) 
to enforce in the data plane and where in the network topology they will be inserted). Finally, the 
Network Self-protection is responsible for executing such self-healing rules in the data plane and 
thus, stopping the attack and restoring the network traffic back to pre-attack performance The 
Network Self-Protection architecture consists of three main sub-components: 

• Protection Decider (PD) 

• Data Security Controller (DSC) 

• Protection Control Agent (PCA) 

The functionality of these architectural sub-components is discussed in detail in section 3.4.3.1. 
describing the logical architectural view of the component. 

3.4.1.2 Requirements 

A recall of the high-level requirement that has been previously defined and provided in deliverable 
D2.4 is given below. 

Requirement 8.2.1 – Mitigate Attack against IoT Overlay Networks: The Network Self-protection 
component will be deployed in the Edge and Core segments of the ARCADIAN-IoT infrastructure. 
In these segments, network traffic sent by IoT devices and sensors may be processed and 
encapsulated in overlay networks to guarantee user mobility and isolation between different 
tenants or users sharing the same physical infrastructure. Therefore, this component must be 
able to deal with overlay traffic and to identify the traffic from any IoT device regardless the number 
and types of encapsulation headers. 

3.4.1.3 Objectives and KPIs 

As stated above, the main aim of the Network Self-Protection component is to provide protection 
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capabilities that will allow to fulfil the specific requirements of the different use cases and 
scenarios addressed in ARCADIAN-IoT. To assess the suitability of the component, the following 
KPIs will be used to validate its performance: 

 

KPI scope 

Novel traffic classifier able to deal with data paths in 4G/5G IoT networks (overlay traffic with 
several levels of nested encapsulation) 

Measurable Indicator 

Support encapsulation and tunnelling protocols widely used in overlay networks inherent to 
4G/5G IoT mobile infrastructures such as VXLAN, GRE, GENEVE or GTP, for instance. 

Baseline value 

In the current state of the art, there is no traffic classifier supporting nested network traffic 
inherent to 4G/5G and able to perform a Deep Packet Inspection (DPI) of encapsulated traffic 
where protocols needed for user mobility (GTP) or tenant isolation (VXLAN or GRE). So, the 
baseline value for this KPI is 0. 

 Target value Achieved value 

 
>= 4 (Edge, Core, RAN and Transport)  

 
= 4 (Edge, Core, RAN and Transport) 

 

KPI scope  

OpenFlow protocol extension to provide a flexible and extended programmability of the data 
plane. 

Measurable Indicator 

% Recovery of the flow services prior to anomalous behaviour.  
Reduce human intervention to the strictly required, in healing and recovery procedures. 

Baseline value 

N.A. Latest version of Open Flow cannot provide a flexible, extended, and fine-grained data 
plane programmability in 4G/5G with overlay networks. So, current OF version cannot be 
used to enforce security policies in the data plane to stop a known attack and restore the 
network services to the previous status. 

Target value Achieved value 

 
> 95% service recovery 
Towards 0 % human intervention 
 

 
 100% services successfully recovered. 
About 0 % human intervention 

 

KPI scope  

OVS Netlink API extension for inter-process communication kernel-user space 

Measurable Indicator 

Number of different flows mitigated  
Bandwidth performance 

Baseline value 

N.A. In the current SotA, there is no solution provided to stop known attacks when dealing 
with 4G/5G encapsulated traffic with nested headers for user mobility and tenant isolation. 

Target value Achieved value 

 
Up to 10^6 malicious flows  
 
 

 
1048576 (220)  malicious flows when NSP 
acting like a 4G/5G firewall 
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Support to work up to 10 Gbps 
 

13.82 Gbps when dealing with 72000 users 
(IoT devices) connected to the network.  
 

 

All these KPIs are related to the main project objective “Self and coordinated healing with reduced 
human intervention”. Thus, this component will further contribute to mitigate and reduce the 
number of cyber incidents involving IoT devices. 

3.4.2 Technology research 

3.4.2.1 Background 

Virtual switches in 4G/5G IoT multi-tenant virtualized infrastructures play a crucial role since this 
is the place in the network where the physical network managed by Infrastructures Service 
Providers (ISPs) and the overlay virtual networks built on top of those physical networks intersect. 
This concrete segment in the Data Plane (DP) pipeline where both types of infrastructures, 
physical and virtual, converge is named Software Data Path (SDP). The Network Self-Protection 
entails a novel SDN-based Software Data Plane Agent providing improved programmability 
beyond the current state of the art to allow the enforcement of security policies aimed at mitigating 
known DDoS attacks.  

As a first step to the design and prototyping of the component, the following features have been 
identified as needed for the Network Self-protection component to meet the functionality and use 
cases requirements expected in the project: 

• A programmable Software Data Plane agent able to enforce dynamically security policies 
to mitigate known DDoS attacks in real time. 

• Support for protection rules into IoT networks, overlay networks with several levels of 
nested encapsulations, and any other ARCADIAN-IoT related networks. 

• Support for protocols widely used in IoT mobile networks, data centres and cloud 
deployments like for example: 

o GTP to ensure user and device IoT devices mobility across antennas. 

o VXLAN, GENEVE or GRE to guarantee isolation between tenants in multi-tenancy 
infrastructures. 

• Large scalability to deal with a vast number of IoT devices expected in 5G networks and 
the ARCADIAN-IoT use cases.  

After a comparative analysis of the existing state-of-the-art software data paths, such as DPDK20, 
XDP21 (eXpress Data Path) or OpenVSwitch22 (OVS) just to mention a few, OVS has been chosen 
as a baseline for the implementation of the Network Self-protection component. The main reasons 
motivating this decision are the following: 

• OVS is an open-source virtual switch platform supported by a community workgroup 
keeping it in continuous development. 

• It is a well-known software switch widely used in Software Defined Networks (SDNs) and 

 

 

20 https://www.dpdk.org/  

21 https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/ 

22 https://www.openvswitch.org/ 

https://www.dpdk.org/
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://www.openvswitch.org/
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virtualized networks where it is considered the de-facto standard. 

• OVS provides a programmable OpenFlow NBI. 

• It is widely used for cloud computing frameworks such as OpenStack23. 

• Robustness and satisfactory performance. 

The Network Self-protection component is being implemented on OVS version 2.16.2 which can 
run on Linux kernels from 3.16 to 5.8. We use the latest OpenFlow specification (version 1.5.1 
released in 2015).24 

3.4.2.2 Research findings and achievements 

The development of the Network Self-protection component involves a significant extension of 
the OVS base architecture and functionality aimed at fulfilling the requirements of the project. The 
following items have been identified during the design stage as extensions to be implemented in 
the OVS architecture: 

• Novel traffic 5G IoT classifier extended from traditional traffic classification for IP networks 
to a more complex classifier able to deal with all data paths expected in 5G IoT 
infrastructures such as overlay traffic with several levels of nested encapsulation. 

• Increase the expressiveness of the OpenFlow tables managed by the PD subcomponent 
with new fields providing a flexible, fine-grained flow definition fitting with the new fields 
extracted by the novel 5G IoT traffic classifier. 

• OpenFlow protocol extension aligned the two previous points  to provide a flexible fine-
grained flow definition, enhanced control, and extended programmability to the Network 
Self-healing component. 

• Extension of the OVS OpenFlow NBI (ofproto library) functionality with the OpenFlow 
protocol extensions described in the previous point  allowing the Protection Decider to 
send and receive extended Open Flow messages from the PCA. 

• Extension of the Netlink API for the inter-process communication between the Datapath 
Security Controller in kernel space and the PD in user space. 

• Upgrading of command line application suite included in the OVS distribution with the new 
capabilities to allow programmability via command line as an alternative method to Open 
Flow sockets. 

It is worthy to further discuss two of these extensions: 

• The 5G IoT traffic classifier 

• The extensions carried out on the Open Flow protocol.  

Regarding the 5G IoT traffic classifier, this module is the entry point of the network traffic into the 
Software Data Path. This module is part of the Datapath Security Controller sub-component, and 
it is responsible of performing a deep inspection of the protocol headers of every packet passing 
through the Software Data Plane. As a result, the classifier extracts information from every packet. 
This extracted data is kept in a key flow associated to every packet and it is sent to the next 
module in the Software Data Plane pipeline, the Flow Match Action module. The flow key contains 
the needed information to allow the Flow Match Action module to take a decision for the packet 
by matching its associated flow key against the slices enforced in the Data Plane. The final 

 

 

23 https://www.openstack.org/ 

24 https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf  

https://www.openstack.org/
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
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architectural design of the 5G IoT classifier is provided in Figure 33, where it can be observed the 
re-entrance between modules responsible for each supported protocol and all the different 
tagging, tunnelling, overlay, and L2/L3/L4 supported protocols. 

When compared to traditional 5-tuple traffic classifiers based on the TCP/IP network stack, the 
main novelty is that the proposed novel 5G IoT classifier is able to extract information from the 
inner headers in overlay networks with several levels of nested encapsulations as expected in 
virtualised multi-tenant 5G infrastructures. This new extended key flow allows a more flexible and 
fine-grained traffic classification that will enable the enforcement of customized security policies 
in the data plane to meet the requirements agreed with the ARCADIAN-IoT end-users, verticals, 
and stakeholders in terms of security and privacy levels. 
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Figure 33 - Overview of the 5G IoT traffic classifier integrated in the Network Self-Protection 

 

Concerning the Open Flow contribution, the protocol has been extended with 17 new fields 
matching the data in the 5G flow key extracted by the 5G IoT classifier. The new fields contain 
information from the inner headers allowing to identify IoT devices, services, and users in an 
unambiguous way. It also provides data about the different encapsulations and tunnels through 
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which IoT traffic traverses the network. Table 12 lists the proposed new fields along with the 
length in bytes and the field description.  

Open Flow Field Length (Bytes) Description 

inner_ip_src 4 Source IP address in the inner IP4 header 

inner_ip_dst 4 Destination IP address in the inner IPv4 header 

inner_tos 1 ToS/DSCP value  in the inner IPv4 header 

inner_port_src 2 Source port in the inner UDP header 

inner_port_dst 2 Destination port in the inner UDP header 

inner_l3_protocol 2 Ethernet type of the inner layer 3 header 

inner_l4_protocol 1 IANA protocol number of the inner layer 4 header 

tunnel_type_1 1 Tunnel type of encapsulation level 1 

tunnel_type_2 1 Tunnel type of encapsulation level 2 

tunnel_type_3 1 Tunnel type of encapsulation level 3 

tunnel_type_4 1 Tunnel type of encapsulation level 4 

tunnel_type_5 1 Tunnel type of encapsulation level 5 

tunnel_key_1 4 Tunnel key of encapsulation level 1 

tunnel_key_2 4 Tunnel key of encapsulation level 2 

tunnel_key_3 4 Tunnel key of encapsulation level 3 

tunnel_key_4 4 Tunnel key of encapsulation level 4 

tunnel_key_5 4 Tunnel key of encapsulation level 5 

Table 12 - Proposed new Open Flow fields 

It is worth highlighting that the protocol header field matching the tunnel ID depends on each 
encapsulation protocol context as indicated in Table 13. For example, in the case of GTP, used 
to deliver IoT device and user mobility across the antennas and the network, the tunnel ID refers 
to the Tunnel Endpoint Identifier (TEID) field in the GTP header. In VXLAN, used to guarantee 
isolation between different tenants sharing the same physical infrastructure, the tunnel ID 
corresponds to the VXLAN Network Identifier (VNI) field of the VXLAN header. Notice that the 
pair (VNI, TEID) identifies unequivocally a IoT device. 

Encapsulation 
Protocol 

Tunnel 
type 
value 

Tunnel key description 

VXLAN 1 VXLAN Network ID (VNI) 

GPT 2 Tunnel Endpoint Identifier (TEID) 

GRE 3 GRE Key 

MPLS 4 MPLS Label 

VLAN 5 VLAN Identifier (VNI) 

NSH 6 Service Path Identifier (SPI) 

VXLAN-GPE 7 VXLAN Network ID (VNI) 

GENEVE 8 Virtual Network Identifier (VNI) 

Table 13 - Parsing of encapsulation, tunnelling & tagging protocols: tunnel type values & key descriptions 
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3.4.2.3 Produced resources 

Due to the application of IPR safeguarding measures, UWS has not the intention to make any 
release of the source code for this component and thus it will not be made available in any public 
or private repository or server outside of our premises. For integration purposes, a functional 
prototype of the Network Self-Protection component will be released for the ARCADIAN-IoT 
consortium. 

3.4.3 Design specification 

3.4.3.1 Logical architecture view 

The overall view of the Network Self-protection architecture designed by UWS is provided in 
Figure 34, which highlights the three main subcomponents integrating the functionalities 
previously described: Protection Control Agent (PCA), Protection Decider (PD) and Datapath 
Security Controller (DPSC). The internal and external interfaces are depicted in the figure as well 
(a functional description of the interfaces is available in deliverable D2.5. 

 

 

Figure 34 - Network Self-Protection architectural overview 

 

The functionality of the subcomponents is described as follows:  

• The self-management capabilities are achieved by the Protection Decider (PD) which is 
responsible for deciding on every instant what subset of rules from the complete set of 
protection rules located in the PD will be enforced in the DSC by creating an autonomous 
control loop to perform self-optimization of the protection capabilities and thus achieving 
large scalability, really needed to deal with security on IoT networks. The PD is 
continuously monitoring the behaviour of the DPSC to optimise its performance.  

• The Datapath Security Controller (DPSC) is the subcomponent that processes the 
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network traffic and thus eventually enforces the protection rules into the data plane. Every 
packet through the data plane is deep inspected and classified, and an action is taken 
based on the subset of protection rules active at the moment. If a packet does not match 
any rule, it is sent to the PD subcomponent so the subset of protection rules kept in the 
DPSC tables can be updated.  

• Finally, the third subcomponent is the Protection Control Agent (PCA). It is responsible 
of providing a North Bound Interface (NBI) for the communication with the Network Self-
healing component. The exposed NBI is an intend-based interface receiving technology-
independent instructions that are translated into technology dependant commands to be 
enforced in the data plane. The PCA subcomponent allows dynamic management of the 
life cycle of the set of protection rules in the self-management system: installation, 
modification, and deletion. 

3.4.3.2 Sequence diagram 

The sequence diagram showed in Figure 35 illustrates the interaction between the 3 ARCADIAN-
IoT components composing the cognitive loop deployed in the Edge and Core segments of the 
networks. These 3 components collaborate together to protect the network and therefore the 
ARCADIAN-IoT infrastructure. The Network Flow monitoring detects illegitimate traffic coming 
from a cyber-attack and raises an alert as a Network IDS Event (1 in Figure 35). This alert is 
consumed and processed by the Network Self-Healing component (2 in Figure 35). The NSH, 
based on the network topological and resources information gathered, takes a decision on how 
to stop the attack: At which point of the data plane pipeline, when to stop the attack and how to 
stop the attack. The healing decision is sent in form of Self-Healing instruction to the RabbitMQ 
exchange where is consumed by the NSP agent (3 and 4 in Figure 35). The NSP is the 
ARCADIAN-IoT component which is eventually enforcing the security policies in form of self-
protection rules in the data plane to mitigate the attack. 

 

Figure 35 – Sequence Diagram describing interaction between Network Self-Protection and 
other ARCADIAN components involved in the Self-Healing loop   

 
The PCA, that is the Northbound API sub-component of the NSP, parses the message sent by 
the NSH and build an Open Flow message containing a self-protection rule that is sent to the PD 
(5, 6 and 7 in Figure 35). The PD save the rule in user space in Open Flow format, but the rule is 
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not yet applied in the network traffic pipeline. This is mechanism to optimise the performance of 
the DPSC when managing traffic. Once the self-protection rule has been inserted in the Open 
Flow tables (8 in Figure 35), the PD sends an ACK message to the PCA which in turn confirms 
to the NSH that the self-healing instruction has been successfully applied (9, 10 and 11 in Figure 
35). When the first packet of malicious traffic arrives at the DPSC instance, it is parsed, and the 
flow key extracted is matched against its protection rules. Unlike the PD which is a user-space 
daemon, the DPSC is a kernel module, and the self-protection rules are not stored in Open Flow 
format but in binary format similar to the flow key extracted by the 5G IoT classifier. This allows 
for higher performance in handling network traffic, thus providing improved bandwidth. The PD is 
continuously monitoring the subset of Open Flow rules inserted into the DPSC tables, optimising 
it by removing the unnecessary rules (e.g., rules not matching traffic since n seconds). Since there 
is no rule matching the packet in the DPSC, the packet is sent to the PD (15 in Figure 35). The 
PD sends to the DPSC the self-protection rule to be inserted in the data plane (16 in Figure 35). 
The communication between the PD and the DPSC subcomponents is accomplished by using 
the NETLINK inter-process communication. Once the self-protection rule inserted into the data 
plane (DPSC rule table) (17 in Figure 35), all harmful traffic matching the rule will be dropped, 
resulting in stopping the attack at the desired point in the network (18 in Figure 35). 

3.4.3.3 Interface description 

• Network Healing Instructions is the interface that the NSH component will use to provide 
the Network Self Protection component with the necessary information about what, where 
and how to mitigate the threat happening in the detected network segment. 

• Network Self-Protection confirmations is the interface that the Network Self-Protection is 
using to provide information about the successful enforcement of the security rule provided 
by the Network Self-Healing component. 

 

Partner Definition Channel Exchange 

UWS Network Self-Healing 
RabbitMQ   

AMQP 0.9.1 

Network Self-Healing 
Instructions 

UWS Network Flow Monitoring 
RabbitMQ 

AMQP 0.9.1 
Network Self-Protection 

Confirmations 

UC Reputation System 
RabbitMQ 

AMQP 0.9.1 
Network Self-Protection 

Confirmations 

Table 14 - The external interfaces of the Network Self-protection component 

 

3.4.3.4 Technical solution 

3.4.3.4.1 Deployment architecture view 

Figure 36 denotes the global deployment architecture view followed by the UWS cognitive loop 
for network security components alongside an entire 5G network infrastructure. The 5G 
architecture is composed by different network segments and layers. It can be differentiated the 
Radio Access Network (RAN) segment, where IoT devices are connecting to the different 5G gNB 
with its respective Distributed Unit (DU) that connects to the consequent network segment, the 
Edge. This network segment oversees the responsibility of deploying and managing the digital 
services from the rest of the stakeholders involved in the system, as Digital Communication 
Services Providers. They use their virtual Central Units to manage communications across the 
rest of the infrastructure. In addition, in the Edge segment can be found Multi-access Edge 
Computing applications in order to approach computing services and capabilities to the end user. 
The transport network segment is the one between the Edge and Core premises, where the traffic 
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is routed from the specific geographically distributed Edge to the centralized Core. The last 
network segment in the infrastructure is the Core, where first user authentication takes place. 
Once the communications leave the Core segment, they are forwarded to an inter-domain 
network segment outside the infrastructure provider’s domain. 

The Network Self-protection component is deployed in the software data path as an SDN-based 
virtual software switch. It is deployed as a distributed component in each one of the machines 
within the cloud infrastructure where the cyber-attack could be mitigated.  

 

 

Figure 36 - Network Self-Protection Loop architectural overview with NFM, NSH and NSP integrated. 

 

3.4.3.4.2 API specification 

The Network Self-Protection component is using a message bus publication/subscription channel 
to interact with the rest of the components in the ARCADIAN-IoT framework. This component 
uses two different exchanges: the first is the Network Self-Healing Instructions, where the Network 
Self-Healing will be publishing the specific healing instructions with information about the 
enforcement action that might be taken by the NSP component. As a second interface, the NSP 
component will be publishing to the Network Self-Protection confirmations. This information will 
be used to confirm the security rule has been already enforced by the NSP component and thus 
the effectiveness of the cognitive self-protection security network loop will be also confirmed.   
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3.4.4 Evaluation and results 

 
The Network Self-Protection ARCADIAN–IoT component was validated in the same testbed 
described in section 3.1.4 for the Network Flow Monitoring (NFM). This testbed integrates the 3 
architectural components conforming the Network Self-Healing Loop, that is, the NFM, the 
Network Self-Healing and the Network Self-Protection. Thus, the testbed configuration and 
different scenarios shown in Table 4 are the same for the 3 components. Section 3.1.4 provides 
a complete description and discussion of the testbed.  
In examining the NSP component behaviour in Figure 20 in section 3.1.4, it becomes apparent 
that it exhibits a longer time consumption in scenario A compared to scenario B, although it 
maintains consistency across all settings within each scenario. Specifically, NSP required 
approximately 5 seconds in scenario A and roughly 1.5 seconds in scenario B to execute the 
healing directives within the data plane and effectively terminate the attack. The variance in 
response times for NSP arises from its distributed deployment. This component is strategically 
distributed across the various compute nodes within the network topology, resulting in a workload 
distribution that aligns with the number of NSP instances deployed throughout the infrastructure. 
Capitalizing on this distributed nature, Figure 20 illustrates improved performance in NSP as the 
network topology expands, even as the number of IoT devices remain constant. This underscores 
the benefits of leveraging the distributed architecture, particularly when network complexity 
increases. 

Furthermore, it is essential to emphasize that all the configurations outlined in 4 encompass 
scenarios and topologies characterized by the involvement of multiple stakeholders, the 
incorporation of diverse network segments, and the utilization of various overlay network layers 
within the network architecture. Consequently, the KPIs for the NSP component have been 
comprehensively addressed and successfully attained across these experimental scenarios. 

3.4.5 Future work 

A prospective direction for future research, beyond the ARCADIAN-IoT, involves delving into the 
integration of the proposed framework with multiple kernel bypass technologies. This integration 
would extend to include technologies such as the extended-OVS (Open vSwitch) kernel module, 
Data Plane Development Kit (DPK), and eXpress. Such an exploration would enhance the 
framework's capacity to leverage cutting-edge technologies for optimizing network performance 
and security. 

3.5 IoT Device Self-protection 

3.5.1 Overview 

3.5.1.1 Description 

The Device Self Protection is an ARCADIAN-IoT component designed to protect IoT devices from 
threats or anomalies detected by other components of the ARCADIAN-IoT framework. The IoT 
Device Self-Protection (DSP) component enforces protection policies at the device level 
whenever possible and suggests policies to apply to when direct application is not possible (e.g., 
due to business logic rules or device restrictions). These policies include disabling access to 
specific network protocols or preventing access sensitive data or directories in the device. Another 
objective of this component is to reduce human intervention, with the indication of appropriate 
protective measures and for the implementation of automated rule enforcement. 

To perform these actions, the IoT Device Self-Protection relies on information derived from other 
ARCADIAN-IoT components such as the Device Behaviour Monitoring (DBM), Cyber Threat 
Intelligence (CTI) or Reputation System (RS). These provide information on detected anomalies, 
indicators of compromise and reputation levels, respectively. These inputs, when combined with 
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tailored risk levels, allow the creation of a greater variety of policies and thus better protection of 
IoT devices. 

After analysing the inputs that are provided to DSP component, the application of policies to 
vulnerable devices is either directly applied or suggested (via RabbitMQ queues) to domain 
administrators. Information about policy enforcement is announced to the Reputation System, 
and when applicable, to the Self-Recovery component – which may trigger recovery actions or 
preventive measures with respect to data backup. 

3.5.1.2 Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 is given below. 

Requirement 3.5.1 - Heartbeat monitoring mechanisms towards ARCADIAN-IoT framework 
should be implemented. 

Requirement 3.5.2 - Device should allow at least one type of adaptive settings (e.g., dynamic 
configuration, rule enforcement, permission granting/revoking). 

Requirement 3.5.3 - Device should provide administrative privileges to self-protection component. 

Requirement 3.5.4 - Device should be able to periodically obtain up-to-date classification of 
applications and services (e.g., from reputation system or CTI). 

3.5.1.3 Objectives and KPIs 

KPI scope  

Policy enforcement based on ensemble of risk levels, indicators of compromise, reputation 
and threat information 
 

Measurable Indicator 

Number of policy enforcement methods. 
 

Benchmarking  

Support at least a risk level protection approach 

 

Target value Achieved value 

 
Support at least 3 policy enforcement 
methods (e.g., risk levels, reputation 
information, threat or indicators of 
compromise). 
 

 
Supporting 3 policy enforcement method 
(i.e., threat information for intrusion detection 
system, reputation system and indicators of 
compromise). 

 

KPI scope  

Autonomous self-protection mechanism for heterogeneous operating systems and devices. 
 

Measurable Indicator 

Type of supported operating systems (e.g., Linux and android) and type of device (e.g., 
drones and smartphones). 
 

Target value Achieved value 

 
Support at least 2 Operating Systems and 2 
device types 

 
Supporting 2 Operating System (Linux and 
Android) and 2 device types (drone and 
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 smartphone). 

 

3.5.2 Technology research 

This section gives background information on the problem, highlighting research that has been 
conducted with respect to state-of-the-art in Self-Protection solutions, as well as research findings 
and resources that have been created. 

3.5.2.1 Background 

The growth in the number of IoT devices in recent years has forced developers to pay more 
attention to security issues. The greater the variability of IoT devices, the greater the diversity of 
threats. According to OWASP (The Open Web Application Security Project), which periodically 
publishes the top 10 causes of device security failures, the main problems are weak passwords, 
insufficient privacy protection or lack of proper device management [52]. 

It is essential to enforce a security layer capable of reducing the effectiveness of attacks and 
intrusions attempts on IoT devices. Self-protection mechanisms are designed to increase runtime 
software system security. By having inputs on the status of a system and its execution 
environment, self-protection mechanisms can automatically prevent or minimize security risks by 
making decisions based on the observed state and implementing enhanced security measures 
that are appropriate for the present threat. The advantage of these mechanisms is that they 
enable the protection of IoT devices with reduced or no human intervention. 

This work also required the identification of self-preservation methodologies related to those 
slated for incorporation within the ARCADIAN-IoT framework, while concurrently stimulating 
enhancements for the targeted component. The initial step considered the pursuit of an 
architectural framework aligned with the specific objectives of device self-protection component. 
In this context, the MAPE-K architecture emerged as particularly noteworthy, given its 
segmentation of the system's operation into the sequential stages of:  

• Monitor: collects data from managed element. 

• Analyzer: examines the data collected by the Monitor and determines whether any 
variations relevant happened. 

• Planner: determines which system modifications should be made to meet the variances 
found by the Analyzer and specifies the set of operations to be used in the system. 

• Executer: applies the system changes recommended by the Planner. 

• Knowledge Base:  includes data from the Monitors that have been filtered, statistical data, 
and self-protection strategies that have been used in past instances. 
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Figure 37 - MAPE-K Architecture Representation [53] 

 

The architecture represented in Figure 37 depicts the logical architecture of protection loop, in 
which the IoT Device Self Protection component is based. The Monitor corresponds to the module 
responsible for receiving new alerts from other ARCADIAN-IoT components (e.g., Device 
Behaviour Monitor or Device Self Protection. The Analyse and Planner blocks correspond to 
modules that deal with data processing, finding the best response (i.e., policy) to a threat. The 
Executer block corresponds component module which will enforce or suggest the recommend 
policies. Finally, the Knowledge Base holds the policies that may be applied to each of the 
detected threats. 

 

3.5.2.2 Research findings and achievements 

During the research process, we sought alternatives for data analysis beyond the examination of 
data provided by the components feeding into IoT Device Self-Protection. One identified approach 
relates to enable protective responses based on risk levels. For instance, consider a 
straightforward scenario: a failed attempt to log in to an application may be deemed a low-risk 
event. However, if the frequency of such attempts is notably high, the potential for suspicious 
activity proportionally increases, prompting consideration of additional protective measures. In 
the first scenario, the failed attempt may be considered inconsequential; however, in the latter 
case, it could imply a brute force attack, allowing the implementation of measures such as a 
request for secondary authentication. This approach enables a broader coverage of actions, thus 
augmenting the layers of security for the devices involved. 

Ultimately, an additional capability concerning IoT Device Self-Protection pertained to the 
methodology for preserving device protection policies. The consideration of employing a database 
was dismissed, given its inherent complexity, which would prove heavy should this component 
be installed on devices, as it is the case within ARCADIAN-IoT. Moreover, database access 
typically incurs latency, potentially resulting in performance degradation. The identified resolution 
revolves around the utilization of the OPA policy engine. This tool facilitates the creation and 
archival of new policies in a .rego file format. Consequently, not only does this approach ensure 
the efficiency of the component, but it also streamlines the processes of policy composition and 
retrieval. 

Overall, the development of the IoT Device Self-Protection component has considered the 
following aspects: 
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• Policy Storage:  

- Another functionality is the ability to store self-protection policies (i.e., actions and 
rules) via a third-party policy manager - Open Policy Agent (OPA). This allows the 
component to store several self-protection policies in an efficient and structured 
manner.  

- The policies may include an enumeration of actions to perform to apply certain 
policies. For instance, the policy “Block incoming SSH communications” includes 
actionable information that the device must DROP incoming traffic on port 22 or 
DROP all incoming traffic identified with the SSH protocol.  

- The device self-protection component supports (in the use cases where it is 
applicable) the automatic enforcement of protection policies directly on the device. 
This enables the component to make changes on the device by translating the 
protection policy in actionable commands (e.g., dropping incoming traffic on port 
22 requires making changes on the device’s firewall to apply such policy). 

- In the cases where automatic rule enforcement is not available, this component 
makes the recommended actions available to the system managers or 
administrators via the RabbitMQ exchange. 

 

• Hybrid Deployment Method: 

- As previously mentioned, the Device Self Protection component works with a local 
OPA version (via binary/executable) [55]. This version deploys on Linux based 
devices, which means that the policies can be obtained locally via a shell 
command.  

- Alternatively, it also deploys in server mode, where an OPA container is deployed 
remotely with the desired policies, and thus, the client can make a request with a 
specific input to the server and receive a response with the respective policy to 
apply. 

• Policy enforcement methods: 

- The current policies were defined according to the specificities of the use cases 
and can also be adapted to encompass other inputs from other components. 

- The current implemented policies are listed in the table as follows: 

Policy Name Sender Component Description/Action 

close_ssh_port Device Behaviour 

Monitoring 

Drops traffic on port 22 via the 
iptables rules. 

Applied when an intrusion is 
detected on the sshd service. 

close_ftp_port Device Behaviour 
Monitoring 

 

Drops traffic on port 21 via the 
iptables rules. 

Applied when an intrusion is 
detected on the ftp service. 

request_two_factor 

_authentication 

Device Behaviour 

Monitoring 

Applied when an anomaly is 
detected on authentication 
events. 

sudden_reputation_score_ 

change_warning 

Device Behaviour 
Monitoring 

Restrict device user access of 
specific directories (e.g., user 
folder/system folder). 
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Applied when a reputation 
score of reputation is low 
enough. 

lower_reputation 

_score_warning 

Reputation System Restrict device user access of 
specific directories (e.g., user 
folder/system folder). 
 
Applied when a reputation 
score of reputation is low 
enough. 

low_reputation_alert Reputation System Delete compromised user. 
 
Applied when a extreme low 
score of reputation is detected. 

recover_high_reputation 

 

Reputation System Reverse device user access of 
specific directories (e.g., user 
folder/system folder). 
 
Applied when a reputation 
score of reputation is high 
enough. 

sudden_reputation 

_score_change_warning 

Device Behaviour 
Monitoring 

Restrict device user access of 
specific directories (e.g., user 
folder/system folder). 
 
Applied when a reputation 
score of reputation is low 
enough. 

lower_reputation_ 

score_warning 

Reputation System Restrict device user access of 
specific directories (e.g., user 
folder/system folder). 
 
Applied when a reputation 
score of reputation is low 
enough. 

user_threat CTI Delete user/ Restrict device 
user access of specific 
directories (e.g., user 
folder/system folder). 
 
Applied when a IoC is shared 
by CTI with an user entity that 
presents a threat. 

malware_threat CTI Restrict device user access of 
specific directories (e.g., user 
folder/system folder). 

Applied when a IoC is shared 
by CTI with a malicious 
file/folder that presents a threat. 

Table 15 - Applicable policies and descriptions 
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Figure 38 - Example of the policy file structure of Device Self Protection using Open Policy Agent 

3.5.2.3 Produced resources 

The developed code is written in Python 3 and is available on the project’s GitLab repository 
[54]. 

3.5.3 Design specification 

The logical architecture view is considered in this section, where we explore the internal and 
external interfaces of the component, sequence diagrams, the deployment architecture model, 
interface definition, and the resulting technical solution. 

3.5.3.1 Logical architecture view 

Figure 39 illustrates the logical architecture that represents the IoT Device Self-Protection 
component, as well as its internal and external interfaces.  

 

Figure 39 - Device Self-Protection component architecture 

The internal workflow is composed of the following subcomponents (internal interfaces): 

• Event handler: This sub-component handles incoming events from other ARCADIAN-IoT 
components like the Behaviour monitor component (e.g., threat/intrusion detection 
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warnings), CTI (e.g., Indicators of Compromise or external threat/intrusion-related 
information) and Reputation System (e.g., device reputation information). It also translates 
and forwards the incoming information towards the internal policy enforcer sub-
component.  

• Policy enforcer: It oversees the application/suggestion of specific protective actions on the 
device (e.g., revoking permissions and drop incoming/outgoing traffic connections on 
specific protocols). Based on the incoming events information, the Policy enforcer probes 
the self-protection policies and selects the most appropriate actions based on the available 
information. 

• Self-protection policies: It is represented by a .rego file with the specification of self-
protection policies. This sub-component leverages and interfaces with Open Policy Agent 
(OPA) – described in the following sections – to have policy a knowledge base. 

 

3.5.3.2 Sequence diagrams  

The sequence diagram in Figure 40 depicts the information flow of the IoT Device Self Protection. 
All the actions are initiated from another ARCADIAN-IoT components. The IoT Device Self-
Protection receives intrusion alerts, reputation information or indicators of compromise. The Event 
Handler is responsible for processing and forwarding the incoming information to the policy 
enforcer, which queries the policy registry to determine the most suitable policy to consider. The 
Policy enforcer is responsible for recommending an action to be applied on the devices.  

 

Figure 40 - High level sequence diagram of the IoT Device Self Protection 

 



D3.3: Horizontal Planes - final version 

 

© ARCADIAN-IoT Consortium 2021-2024              Page 103 of 167 

3.5.3.3 Interface description 

The external components that communicate with the device self-protection component are the 
following:  

• Behaviour Monitoring: This interface enables the Device Self-Protection to receive 
threat/intrusion detection warnings from the Behaviour Monitoring component. 

• CTI:  This interface allows Device Self-Protection to receive indicators of compromise or 
external threat/intrusion-related information from the Cyber Threat Intelligence 
component. 

• Reputation System:  This interface enables the DSP to receive reputation updates from 
the Reputation System and allows it to inform the Reputation System about the application 
of the suggested security policies. 

• Self-Recovery:   This interface enables device self-protection to send suggested policies 
to the Self-Recovery component, so that it can initiate data recovery or stop regular data 
backups. It also allows for receiving confirmations about the application of the policies 
from Self-Recovery, which it then forwards to the Reputation System. 

 

The component supports communication with ARCADIAN-IoT messages bus (i.e., RabbitMQ). 
This functionality allows the device self-protection to receive threat alerts from components such 
as Device Behaviour Monitoring, reputation scores from the Reputation System and Indicators of 
Compromise from the CTI. Moreover, this functionality allows the component to forward policy 
enforcement confirmations to other components (e.g., reputation system or self-recovery). This 
messaging system enables the components to exchange information in standard formats. 
Additionally, in the use cases where it applies, the device self-protection has the capability to send 
suggestions via a specialized RabbitMQ queue with the corresponding policy to apply. 

 

The following table summarizes the integration with each of the external components: 

Partner Component Channel Exchange 

IPN Behaviour Monitoring 
RabbitMQ   

AMQP 0.9.1 

Threat/intrusion 
detection warnings 

UC Reputation System 
RabbitMQ 

AMQP 0.9.1 
Reputation updates 

RISE Cyber Threat Intelligence 
RabbitMQ 

AMQP 0.9.1 

Indicators of 

Compromise 

XLAB Self-Recovery 
RabbitMQ 

AMQP 0.9.1 

Service Recovery and 
Self-Recovery 
confirmations 

Table 16 – IoT Device Self-Protection External Interfaces 

 

3.5.3.4 Technical solution 

3.5.3.4.1 API specification 

 

The IoT Device Self-Protection component employs a RabbitMQ publish/subscribe model for its 
communications with other ARCADIAN-IoT components. It both receives and sends messages. 
In particular, it sends messages to the Reputation System and Self-Recovery components. The 
content of these messages varies based on the type of attack, corresponding security policy, and 
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context where the message will be used. The following table presents these parameters in more 
detail. 

Mess
age 

Form
at 

Parameter Type Description Format 

JSON 

timestamp string Current system time 
Unix Timestamp (in seconds) 

(e.g., 1666620456) 

attack_start_date string 
Time when attack was 

first detected 

Unix Timestamp (in seconds) 

(e.g., 1666620456) 

attack_end_date string 
Time when attack 

ended 

Unix Timestamp (in seconds) 

(e.g., 1666620456) 

deviceId string 
arcadian_iot_ID of the 

device 

Source:ID (e.g., ipn:3a45d35a-

2494-407b-b8c9-adf39834a38f 

cause string 
Program/Service that 

was attacked 

Service name (e.g., SSH, FTP, 

etc) 

policy string 
Measure to mitigate 

the threat 

Policy name (e.g., 

two_factor_authentication) 

processId string 
Process ID associated 

to the program 

ID number of the process (e.g., 

9346) 

currentScore float 
Current reputation 

score of the device 

A real number between, and 

including, 0 and 1 

previousScore float 
Previous reputation 

score of the device 

A real number between, and 

including, 0 and 1 

detectedBy string 
The component that 

detected the threat 

Name of the component. 

sender string 
Identification of sender 

component 

<domain> <component> <loca
tion> <entity_id> <service> 

policy_application string 

Indicates whether the 

security policy is 

applied or not. 

Boolean value, in string format 
(true or false) 

policy_enforcer string 

Name of the 

component that tried to 

apply the policy. 

Either “device_self_protection” 
or “self_recovery” 

Table 17 - Device Self-Protection Output Specification 

3.5.3.4.2 Security aspects  

The execution of the IoT Device Self Protection component will inherently increase the security 
level of the devices where it is being deployed by actively and passively applying/suggesting 
protection measures in case of anomalies. 

Actions that result from the application of protection policies do not hamper the core functionality 
of the devices. For instance, the deployment of the component in a drone does not affect its flight 
control mechanisms – in such scenarios, more restrictive policies are recommended to the 
business logic. 
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Additionally, the communication of the IoT Device Self-Protection component with the 
framework’s RabbitMQ is authenticated. In future releases, additional security layers can be 
implemented (e.g., TLS certificate usage). 

3.5.4 Evaluation and results 

Even though this component does not have experimental results like other component (e.g., 
device behaviour monitoring and its ML models), the implemented functionalities were tests and 
validated in a standalone mode. The first tests carried out focused on internally testing and 
validating the IoT Device Self-Protection implementation. Considering the messages generated, 
the component was always able to return the expected results on each of the queried functions. 

Additionally, a complete functional flow was also a target of test and validation. Starting from 
reading the messages coming from the message bus, performing the necessary parsing and 
validation of the contents, going through the selection of policies and finalizing with the 
application/suggestion of the specific policy for the anomalous event detected on the device. 

The successful result of these activities provided additional confidence in the robustness and 
functionality of the component. In addition, these results facilitated the integration made with the 
remaining ARCADIAN-IoT.  

 

3.5.5 Future work 

With respect to future developments, beyond the project lifetime, an essential aspect lies in 
augmenting the component with a policy management add-on. This envisioned extension would 
empower dynamic and seamless integration, modification, and removal of protection policies, 
aligning them precisely with the specific requirements of each deployment use case. This 
endeavor represents a key step towards enhancing the adaptability and responsiveness of the 
self-protection component. By affording a flexible and intuitive interface for policy administration, 
we anticipate a more agile and customized approach to safeguarding devices, thereby fortifying 
their overall security. This expansion will further refine the efficacy and versatility of the system in 
meeting the evolving demands of diverse operational environments. 
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3.6 Network Self-healing 

3.6.1 Overview 

3.6.1.1 Description 

Within the scope of the ARCADIAN-IoT project, UWS has developed the Network Self-healing 
component. This component is designed to mitigate the potential impact of a cyber-attack when 
protection rules for that kind of cyber-attacks are not installed in the system (e.g., Firewall rules 
not installed) and thus the attack has the potential to penetrate the concerned IoT infrastructure.  

This NSH component is asserting what action should be taken and where. The actions can be 
diverse, such as performing a drop, redirecting traffic, or mirroring the flow. On the other hand, 
the location on where should be enforced is determined following logic predefined by the 
programmer, such as “near the source”, “near destination”, “n hops from the source”, etc. These 
actions can be automated by the administrator through a policy engine in order to define different 
strategies for each type of attack. This decision is taken by the analysis of the alert triggered by 
the previous component in the loop, the Network Flow Monitoring.  

Thus, the Network Self-Healing component is responsible for generating a set of healing 
instructions. These instructions are the extension of the information provided by the Network Flow 
Monitoring, in order to achieve a set of implementable actions into the real system with the 
intention to complement any missing information not indicated in the Alert with aspect such as: 
“default duration”, “default way to perform the action”, etc. These set of steps define precisely 
what action to take, where to take it, how to take it, how long to keep it active and when to take it, 
among others. Furthermore, this component oversees the computing of this “close to source” 
location where the attack must be stopped. This is made possible by the information that the UWS 
Resource Inventory Agent (RIA) subcomponent is periodically reporting about the 5G network 
infrastructure and topological information. 

3.6.1.2 Requirements 

A recall of the high-level requirement that has been previously defined and provided in deliverable 
D2.4 [2] is given below.  

Requirement 3.6.1 – Distributed Healing: The Network Self-healing component will be able to 
perform protection/healing rules in a distributed way according to the topological information 
gathered from the infrastructure with the main intention to heal/protect the network against DDoS 
attacks. 

3.6.1.3 Objectives and KPIs 

All these KPIs are related to the main project objective “Self and coordinated healing with reduced 
human intervention” (as recalled in the Introduction). 

 

KPI scope  

Provide self-healing for overlay networks and IoT networks supporting >= 4 encapsulation and 
tunnelling protocols widely used in overlay networks inherent to 4G/5G IoT mobile 
infrastructures such as VXLAN, GRE, GENEVE or GTP.   

Measurable Indicator 

The number of supported encapsulations and tunnelling protocols widely used in overlay 

networks inherent to 4G/5G IoT mobile infrastructures.  
Target value Achieved value 

 
>= 4 (VXLAN, GRE, GENEVE, GTP)  

 
= 4 (VXLAN, GRE, GENEVE, GTP) 
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KPI scope  

Provide dynamic and distributed enforcing of protection/healing policies in 7 or more network 
segments (Edge, Core, RAN, Transport, Backbone, Enterprise, Backhaul, Midhaul). 

Measurable Indicator 

Number of network segments supported to get the metadata information. 

Baseline value 

Core network segment (1) 

Target value Achieved value 

 
>= 7 (Edge, Core, RAN, Transport, 
Backbone, Enterprise, Backhaul, Midhaul) 
 

 
= 7 (Edge, Core, RAN, Transport, Backbone, 
Enterprise, Backhaul, Midhaul) 
 

 

KPI scope  

Provide network topology understanding to reduce human intervention (towards 0% of 
human intervention) supporting the coordination of recovery to pre-defined trust levels (>= 
95% of flow services prior to anomalous behaviour) using such topology. 

Measurable Indicator 

% Recovery of the flow services prior to anomalous behaviour.  
Reduce human intervention to the strictly required, in healing and recovery procedures. 

Baseline number 

0% service recovery with 0% human intervention 

100% service recovery with 50% human intervention 

Target value Achieved value 

 
> 95% service recovery  
Towards 0 % human intervention 
 

 
= 97.5% service recovery  
Towards 0 % human intervention 
 

 

3.6.2 Technology research 

3.6.2.1 Background 

The research carried out by UWS within ARCADIAN-IoT project has unveiled that the closest 
state of the art associated to the Network Self-healing component is the one related to Intrusion 
Prevention Systems (IPSs). These systems usually perform autonomous inspection of traffic and 
enforce the rules to heal and protect the network if there is a cyber-attack. The main problems 
with these tools are:  

• They are traditionally designed for pure IP networks and thus they do not provide support 
for overlay networks nor for IoT network protection.  

• They are usually installed in a component, which is deployed in the middle of the data 
path, and this is the only security control point available in the infrastructure and thus they 
do not provide support for dynamic distributed enforcing of protection/healing policies.  

• They do not understand the network topology and thus are not able to take plans based 
on such topologies, especially the topology of IoT networks. 
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3.6.2.2 Research findings and achievements 

We have designed and developed the Network Self-healing component based on the previously 
identified problems. The Network Self-healing component provides Prescriptive Analytics using 
the data received in real time to determine which actions should be enforced in order to mitigate 
an alert. Thus, when an attack has been detected we need to know:   

• WHAT action should be taken  

• WHERE this action should be enforced  

• WHEN it must be enforced  

• For HOW LONG it must be active.  

The architecture of the Network Self-healing component enables the integration within a loop 
together with Network Flow Monitoring and Network Self-protection components. This loop 
provides the detection of alerts in overlay and IoT networks. These alerts are detected in 
distributed instances of Network Flow Monitoring deployed along the IoT multi-tenant 
infrastructure. Thus, the Network Self-healing component is in charge of receiving this information 
in a centralized instance. The information shared from the Network Flow Monitoring instances 
include (i) information about the malicious flow, (ii) information about the rule that has raised the 
alert, and (iii) the point where it has been detected (see Section 3.1.2.3).  

The Network Self-healing component is composed of two subcomponents: the UWS Self-Healing 
Decision Maker (SHDM) and the UWS Resource Inventory Agent (RIA). RIA has been designed 
and a functional prototype has been implemented. It is a distributed component that must be 
deployed at least in the same machines of the data plane where the Network Flow Monitoring and 
the Network Self-protection components instances are deployed. RIA is in charge of the discovery 
of the network topology, so that SHDM can identify the point where the alert has been raised and 
where it has to mitigate the attack. RIA uses the Linux Inventory Tools (Figure 41) such as lldpcli, 
ispci, iproute2, lshw, brctl or ovs-vsctl juts to mention a few to collect the topological information 
in the machine where it is installed. This information is reported periodically to an internal topology 
interface where SHDM is listening. 

 

 

Figure 41 - Architecture design of the UWS Resource Inventory Agent 
 

SHDM has been designed and prototyped so that it will be a centralised component that 
implements the main functions of the Network Self-healing component. It receives the alerts from 
the Flow Monitoring component and the topological information from RIA. SHDM uses a set of 
Healing Decision Rules to provide Prescriptive Analytics and autonomously decide the WHAT, 
WHERE, WHEN and HOW LONG parameters previously cited. This information is sent as a 
Network Healing Instruction to be collected from the exact instance of the Self-protection 
component determined by the WHERE parameter. 
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3.6.2.3 Produced resources 

Due to the application of IPR safeguarding measures, UWS has no intention to make any release 
of the source code for this component and thus it will not be made available in any public or private 
repository or server outside of our premises. For integration purposes, a functional prototype of 
the Network Self-Healing component will be released for the ARCADIAN-IoT consortium. 

3.6.3 Design specification 

3.6.3.1 Logical architecture view 

 

Figure 42 - Architecture of the Network Self-healing component. 

 

 The Network Self-healing component in ARCANDIAN-IoT is based on an autonomous loop, 
where the following components and subcomponents are involved (see Figure 42):  

• First, the Network Flow Monitoring component (Section 3.1) provides the sensing and 
detection capabilities of a cyber-attack such as DDoS. It allows to detect the cyber-attack.  

• Second, the subcomponent Resource Inventory Agent (RIA) performs the periodical 
reporting of the IoT network infrastructure with the intention to allow an effective self-
healing decision-making process using the topological information.  

• Third, the subcomponent Self-Healing Decision Manager (SHDM) is in charge of 
determining  what is the best plan to heal the network against that type of cyber-attack, 
including advanced intelligence aspects related to the device on where to stop the attack, 
the interface inside of such device and the sense of the communication flow passing for 
such interface, to inform about what is the best effective way to perform the healing of the 
network and also to send such information to the associated self-protection component;  

• Finally, the fourth component is the Network Self-protection component (Section 3.4) 
that executes the mitigation of the attack, and finally deploying the necessary 
countermeasures to enforce the mitigation actions (e.g., traffic blocking/dropping, traffic 
mirroring, etc.). 

 

3.6.3.2 Sequence diagrams 

Figure 43 shows the sequence diagram of the Network Self-Healing component including the 

interactions with Network Flow Monitoring (NFM) and Network Self-Protection (NSP) 

components. It includes both message exchanges Network IDS Events and Network Healing 
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Instructions to show how they interact with each other. The loop on top refers to the periodic 

reporting of the topology from the -Healing Decision Manager (SHDM). This loop happens in all 

the distributed instances of RIA at the same time. The interaction below shows how NFM 

publishes the detected alert to the Network IDS Events exchanged the SHDM consumes that 

message and performs the prescriptive analytics. When SHDM has calculated the healing 

instruction, this is published to the Network Healing Instructions exchange. The published 

message will contain information so that only the specified instances of the NSP component 

receive such instruction. 

 
 

 

Figure 43 - Sequence diagram of the Network Self-healing component 

3.6.3.3 Interface description 

• Network IDS Events is the interface where the Alerts from the Network Flow Monitoring 
are published. All details and fields of these Alerts are described in previous Section 
3.1.2.3.  

• Network Healing Instructions is the interface that the NSH component uses to provide the 
Network Self Protection component the necessary information about what, where, when 
and for how long to mitigate the threat happening in the detected network segment. 

• Network Self-Protection confirmations is the interface that the Network Self-Protection is 
using to provide information about the successful enforcement of the security rule provided 
by the Network Self-Healing component. 
 

Partner Component Channel Exchange 

UWS Network Flow Monitoring 
RabbitMQ   

AMQP 0.9.1 
Network IDS Events 

UWS Network Self-Protection 
RabbitMQ 

AMQP 0.9.1 
Network Healing 

Instructions 

UWS Network Self-Protection 
RabbitMQ 

AMQP 0.9.1 
Network Self-Protection 

Confirmations 
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Table 18 - Network Self-healing External Interfaces 

3.6.3.4 Technical solution 

3.6.3.4.1 Deployment architecture view 

Figure 44 denotes the global deployment architecture view followed by the UWS cognitive loop 
for network security components alongside an entire 5G network infrastructure. The 5G 
architecture is composed of different network segments and layers. It can be differentiated from 
the Radio Access Network (RAN) segment, where IoT devices are connecting to the different 5G 
gNB with its respective Distributed Unit (DU) that connects to the consequent network segment, 
the Edge. This network segment oversees the responsibility of deploying and managing the digital 
services from the rest of the stakeholders involved in the system, as Digital Communication 
Services Providers. They use their virtual Central Units to manage communications across the 
rest of the infrastructure. In addition, in the Edge segment can be found Multi-access Edge 
Computing applications in order to approach computing services and capabilities to the end user. 
The transport network segment is the one between the Edge and Core premises, where the traffic 
is routed from the specific geographically distributed Edge to the centralized Core. The last 
network segment in the infrastructure is the Core, where first user authentication takes place. 
Once the communications leave the Core segment, they are forwarded to an inter-domain 
network segment outside the infrastructure provider’s domain. 

The Network Self-Healing component is instantiated in a management layer, which will develop 
the different communications with the rest of the cognitive protection network security loop. 
However, only the NSH Decision Manager is centralized deployed. The Resource Inventory 
Agents are distributed alongside the network infrastructure, recording and publishing fine-grain 
topology metadata that the NSH Decision Manager needs to perform its task. Once an Alert from 
the (centralized or distributed) Network Flow Monitoring component is received to the NSH 
Decision Manager, it will perform the prescriptive analysis that will ensure the best mitigation 
location and action to be enforced. 
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Figure 44 - Deployment architecture view of the Network Self-healing component 
 
 

3.6.3.4.2 API specification 

The Network Self-Healing component is using a message bus publication/subscription channel to 
interact with the rest of the components in the ARCADIAN-IoT framework. This component uses 
three different exchanges: the first is the Network IDS Events, where the Network Self-Healing 
will be retrieving Alerts. As a second exchange, the NSH component will be subscribed to the 
Network Self-Protection confirmations. This information will be used to confirm the effectiveness 
of the cognitive self-protection security network loop. Finally, the NSH will be subscribed to the 
Network Self-Protection confirmations. This information will be used to confirm the security rule 
has been already enforced by the NSP component and thus the effectiveness of the cognitive 
self-protection security network loop will be also confirmed. 

3.6.4 Evaluation and results 

 

The Network Self-Protection ARCADIAN–IoT component was validated in the same testbed 
described in section 3.1.4 for the Network Flow Monitoring (NFM). This testbed integrates the 3 
architectural components conforming the Network Self-Healing Loop, that is, the NFM, the 
Network Self-Healing and the Network Self-Protection. Thus, the testbed configuration and 
different scenarios shown in Table 4 are the same for the 3 components. Section 3.1.4 provides 
a complete description and discussion of the testbed.  
 
A notable observation can be made by comparing the behaviour of the NSH component in both 
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scenarios A and B described in section 3.1.4. A first glance at Figure 20 in section 3.1.4, It 
becomes evident that the execution time of NSH increases linearly as the number of IoT devices 
grows. However, it's important to note that in scenario A, the execution time is consistently higher 
across all settings compared to scenario B. For the most demanding scenario involving 64 IoT 
devices, NSH needed 33.8 seconds in scenario A, whereas it took 19.4 seconds in scenario B. 
As describer in section 3.1.4, the network topology in scenario A comprises 2 Edge Compute 
nodes and 2 gNBs, each one linked to a Data Service Provider (DSP), resulting in 4 action points 
for enforcing attack mitigation. The Self-healing Decision Maker (SHDM), serving as the 
centralized and cognitive component of the Cognitive Self-protection framework, is tasked with 
identifying the optimal location for threat mitigation, emphasising proximity to the source. As such, 
all the computational workload for determining the optimal mitigation location in scenario A falls 
upon the SHDM. However, in scenario B, not only does the number of action points for mitigation 
increase, but also the number of distributed Real-time Information Acquisition (RIA) components 
responsible for real-time network topology information dissemination. This is a crucial reason why 
NSH exhibits improved performance in scenario B, underscoring the advantages of workload 
distribution when confronted with a consistent number of attackers. 
Furthermore, it is essential to emphasize that all the configurations outlined in Table 4 encompass 
scenarios and topologies characterized by the involvement of multiple stakeholders, the 
incorporation of diverse network segments, and the utilization of various overlay network layers 
within the network architecture. Consequently, the KPIs for the NSH component have been 
comprehensively addressed and successfully attained across these experimental scenarios. 

 

3.6.5 Future work 

Beyond ARCADIAN-IoT - Extending NSH Capabilities to Address New Threats: A promising 
avenue for future research involves the expansion of Network Self-healing (NSH) capabilities to 
effectively counteract emerging network-based cyberthreats. This entails exploring novel threat 
scenarios and considering various actuation points within the system. Rather than exclusively 
focusing on scenarios involving Open vSwitch (OVS) and a "close to source" policy, researchers 
should consider diverse use cases that require distinct decision-making and analysis. For 
instance, investigating scenarios where segments of the telecommunications infrastructure have 
been compromised and are engaging in spoofing activities, particularly regarding Digital Service 
Providers' information, would contribute to a more robust and adaptive NSH framework. 
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4 COMMON PLANE 

4.1 Hardened Encryption with SIM as Root of Trust 

4.1.1 Overview 

4.1.1.1 Description 

ARCADIAN-IoT aims at providing cryptographic mechanisms to secure and authenticate private 
IoT data. A basic approach is to employ symmetric encryption protocols allowing devices, servers, 
and users to secure their data for transmission, storage, or other purposes, and signature 
protocols allowing the entities to authenticate the data. Unfortunately, this approach implies that 
a big amount of cryptographic material, such as secure keys, needs to be managed. On one hand, 
keys could be leaked or breached, especially if a single authority server has access and stores 
all of them. Such an event could result in a leakage of data, injection of fake data, impersonation, 
or other security attacks. On the other hand, such a system does not offer much flexibility, since 
data can only be encrypted for one receiver, where again the encryptor needs to trust in an 
authority server, that the key management was not compromised. 

ARCADIAN-IoT's Hardened Encryption (HE) component aims to overcome these limitations by 
providing a system that is more flexible, decentralized, minimizes the trust in central components, 
and is further hardened with information provided by a well-accepted hardware-based Root of 
Trust (RoT) – the SIM (Subscriber Identity Module) present in all cellular IoT and consumer 
devices. 

In this section we provide the description of the encryption system based on the (decentralized) 
Attribute Based Encryption (ABE) paradigm hardened by a SIM hardware-based Root of Trust 
(RoT). The system can be applied to settings with devices having at least a basic processing unit 
able to perform encryption/decryption operations themselves, such as use cases in ARCADIAN-
IoT WP5 Domains A, where the devices to manage are phones/tablets and drones. Note that in 
Section 4.2 another subcomponent of WP3 Task 3.2 is described named Hardened Encryption 
with cryptochip system, which covers the scenario in which the IoT devices are computationally 
more limited and hence embedded crypto chips or independent / external crypto chip modules 
were developed. 

The HE with SIM as RoT consists of three subcomponents. The first one is a software library 
that devices, servers, and other entities can use to encrypt or decrypt/access the data. The main 
paradigm we build on is so-called Functional Encryption (FE), in particular, the Attribute Based 
Encryption (ABE) subfield. ABE allows participants to secure their data based on policies that 
determine who can access their data. This introduces a flexibility into the system giving the choice 
on who can decrypt the data in the hands of the encryptors, on one hand, while on the other hand, 
eliminates the need of an external central authority managing the access rights. Moreover, the 
policies that can be specified can range from simple ones, such as specifying exactly for which 
devices the data is encrypted, to more complex in which groups of users can be specified as 
decryptors, without increasing the complexity of the encryption or sizes of ciphertexts. This also 
drastically reduces the number of keys needed in the system. 

Secondly, it includes a decentralized key management system for distributing the (ABE) keys 
and access rights among the entities in the system. This eliminates a single point of failure, such 
as a single server having access to all the cryptographic material. The system is easy to manage 
and can be deployed in multiple flavours: with multiple authorities handling separate keys, as a 
Multi-Party Computation system, or even as a centralized service if this is desired. The key 
management system is integrated with the blockchain solution provided in ARCADIAN-IoT 
framework, with the framework’s Authentication component based on Self-Sovereign Identity and 
hardware-based RoT, as well as with the Reputation System. 

Thirdly, to increase the trust in the system, prevent impersonation attacks, data poisoning and 



D3.3: Horizontal Planes - final version 

 

© ARCADIAN-IoT Consortium 2021-2024              Page 115 of 167 

similar breaches, the digital signing of encrypted payloads will be enabled by SIM hardware-
based RoT. Such signatures will guarantee the authenticity of data without the risk of 
cryptographic keys being exposed, due to being generated and embedded into the hardware 
secure element itself. Considering the large number of cellular devices (with any SIM form for 
connecting to a cellular network), using the SIM as hardware RoT has the advantage of not having 
to add new hardware secure element for this security feature in most IoT devices, ensuring a 
potential high impact of the solution. The SIM technologies developed build on GSMA’s IoT SAFE 
specification25 and are ready for any SIM form, including the latest ones: SIM, eSIM, iSIM. 

4.1.1.2 Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 [2] is given below. 

Requirement 4.1.1 – Encryption mechanism: Enable secure and lightweight encryption with 
access policy strengthened with hardware-based RoT information. 

Requirement 4.1.2 – Secure key-generation: Provide secure and scalable key management and 
delegation synchronized with the decentralized identity management. 

4.1.1.3 Objectives and KPIs 

With the aim of fulfilling the project’s objectives, the Hardened Encryption component will be 
evaluated against the following KPIs that are related to the main project objective “Provide a 
Hardened Encryption with recovery ability” (as recalled in the introduction). 

 

KPI scope  

Provide an encryption library enabling fine-grained access control over data with APIs in at 
least 4 programming languages and demonstrate its use on at least 2 types of 
devices/platforms. 
 

Measurable Indicator 

Number of platforms and programming languages supported. 

 

Target value Achieved value 

4 programming languages, 2 types of 
devices/platforms. 
 

Supporting Python, Java, Go, JS and C 
tested on Android phones, Raspberry Pi, 
servers, embedded in web browser. 

 

KPI scope  

Add Root of Trust information to encrypted data with SIM based signatures. 
 

Measurable Indicator 

1. Use of SIM as RoT in hardened encryption processes (Y/N) 
2. SIM time to sign a payload (SHA256) 
3. Number of different devices where the innovation is demonstrated 
 

Target value Achieved value 

1. Y 1. Y 

 

 

25 https://www.gsma.com/iot/iot-safe/ 
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2. RoT signature time: < 2 seconds 
3. 2 

2. RoT signature time: 0.5 seconds 
3. 2: SIM security applet is agnostic to the 
device where it runs; Android and Python 
middleware libraries provided for 
demonstration in 2 (according to IoT solution 
providers requests); for Android, an 
authorization SIM applet had to be delivered 

 

KPI scope  

Provide a secure and scalable key management and delegation synchronized with the 
decentralized identity management, multi-factor authentication and self-recovery. 

 

Measurable Indicator 

Amount of integrations with other ARCADIAN-IoT components 

 

Target value Achieved value 

Decentralized key management integrated 
with other ARCADIAN-IoT components. 
 
5 Components 
 

Decentralized key management deployed 
with multiple key authorities or as a Multi-
Party Computation service and integrated 
with other ARCADIAN-IoT Authentication, 
Permissioned blockchain, Self-Recovery 
and Reputation system. 
 
7 completed integrations, with 3 still ongoing 
at the time. 

 

KPI scope  

Provide efficient implementation of the process with encryption times comparable to the 
state-of-the-art results on multiple devices, and with RoT signatures in acceptable time for 
the communication processes. 

Measurable Indicator 

The encryption, decryption (dependent on the access policy complexity) and RoT signature 

time complexity. 

 

Benchmarking 

The benchmarks reported in [15] with a Java implementation that serve as a reference, 
although a different ABE scheme was used: 
Encryption: 

• A laptop with 1.60GHz Intel Quad-Core i7: ~160ms for a policy with 5 attributes   

• An Android phone with 1.60GHz Intel Atom Z2460:  ~2.5s for a policy with 5 attributes 
Decryption: 

• A laptop with 1.60GHz Intel Quad-Core i7: ~250ms for a policy with 5 attributes   

• An Android phone with 1.60GHz Intel Atom Z2460:  ~6s for a policy with 5 attributes 
 

Target value Achieved value 

Comparable to the state-of-the-art 
references: 

- Under 100ms on laptops and phones 
for encryption and decryption of 
ciphertext with a policy having 5 

On a laptop with 1.70GHz AMD Ryzen 7 
PRO 4750U with Go based implementation 
and Python bindings for MAABE and FAME 
schemes, respectively: 

• Encryption 14ms and 32ms for a 
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attributes. 
- Under 5s for limited device such as 

Raspberry Pi for encryption and 
decryption of ciphertext with a policy 
having 5 attributes. 

 

policy with 5 attributes, respectively. 

• Decryption 10ms and 7ms for a policy 
with 5 attributes, respectively. 

On an Android phone Samsung A33 with 2.4 
GHz Cortex-A78 with Go based 
implementation and Java binding: 

• Encryption 26ms and 52ms for a 
policy with 5 attributes, respectively. 

• Decryption 23ms and 20ms for a 
policy with 5 attributes, respectively. 

On a Raspberry Pi 3 Model B+ with 1.4GHz 
Cortex-A53 with Go based implementation 
and Python binding: 

• Encryption 4.7s and 12s for a policy 
with 5 attributes, respectively. 

• Decryption 3.1s and 12s for a policy 
with 5 attributes, respectivley. 

 

 

4.1.2 Technology research 

4.1.2.1 Background 

4.1.2.1.1 Attribute-Based Encryption (ABE) 

Attribute-Based Encryption (ABE) represents a family of encryption schemes first introduced in 
2005 by A. Sahai and B. Waters [16], that mathematically ingrains access control (specifically, 
access policies) directly into the encryption process itself. The family is commonly divided into 
two distinct subfamilies of schemes: Key-Policy ABE and Ciphertext-Policy ABE (CP-ABE) (see 
[17]]). As the former is less suitable for use in this project, we focus on the latter. The principal 
idea of CP-ABE is that the ciphertext is encrypted with an access policy defining which attributes 
an entity needs to possess in order to decrypt the ciphertext. The attributes here can be arbitrarily 
defined by a use-case, ranging from single entities (e.g., specifying the names of the devices that 
are allowed to decrypt) to groups all having the same rights (e.g., all devices in the same group, 
such as a group of phones of doctors or nurses, have the same attribute). The access policy is 
normally in the form of a Boolean formula, i.e., the necessary attributes connected by the AND 
and OR logical connectives. The exemption of the NOT logical connective makes it impossible to 
exclude entities possessing more attributes than necessary, which is in line with the idea that 
entities may choose to hide parts of their identity in the Self-Sovereign Identity model. Entities 
wishing to decrypt the data encrypted with them in mind have to obtain the attribute/decryption 
keys (one per attribute) from the Attribute Authority that checks the entities’ eligibility for attribute 
keys and delegates the keys to the respective entities. The data is then decrypted if and only if 
the set of attribute keys belonging to the entity satisfies the access policy. This procedure has 
many advantages: 

• The users need to maintain only their set of attribute keys to be able to decrypt all the data 
encrypted with them in mind, since data is always encrypted with the same public key 
(technically belonging to the Attribute Authority), instead of managing a complicated web 
of symmetric and asymmetric encryption keys. 

• The data access is specified by an encrypting device; hence no trust is needed in a central 
component to handle access to data or even be directly trusted with unencrypted data. 
This eliminates a major point of failure. 

• The functionality does not require a major computational bottleneck, since it can be 
implemented efficiently (comparable to standard public key schemes). 
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A notable problem with ABE is the existence of a single Attribute Authority. The Attribute Authority 
needs to be a trusted entity, since it possesses the master key (corresponding to the public key 
used for encryption) that is used to delegate decryption keys to all other entities in the network. 
In particular, it allows to derive decryption keys that can decrypt all data encrypted. Hence it 
represents a single point of failure and is an obvious attack target for adversaries and malicious 
actors who wish to decrypt sensitive data, enrol their own devices into the network, or disturb the 
network by preventing the distribution of new decryption keys. Fortunately, effort to decentralize 
this component have been made in the literature, see [18] for a survey of such approaches. We 
implement two decentralization approaches, namely we use an ABE scheme that allows to deploy 
multiple key authorities as well as we implement a Multi-Party Computation protocol that has the 
same functionality as a centralized authority but is secured against malicious corruptions and 
hence decentralizes trust.  

In the recent years, various projects started implementing ABE and a more general Functional 
Encryption (FE) to practical scenarios. We use GoFE library developed in European H2020 
project FENTEC as our base on which we implement the functionalities in this project. 

4.1.2.1.2 SIM as Root of Trust (RoT) 

The main background for the use of SIM as RoT in the Hardened Encryption process is GSMA 
IoT SAFE26. This industry fora working group and the technical specification it develops are still 
in an early stage and open for contributions. IoT SAFE aims to enable IoT device manufacturers 
and IoT solution providers to leverage the SIM as a robust, scalable, and standardized hardware 
RoT to protect IoT data communications. Some of its services are allowing IoT devices to perform 
mutual (D)TLS authentication to a server using asymmetric or symmetric security schemes; to 
compute shared secrets and keep long-term keys secret; and to allow to perform credential 
provisioning and lifecycle management from a remote IoT security service. IoT SAFE is 
compatible with any SIM form (SIM, eSIM, iSIM, …), uses the SIM as a ‘crypto-safe’ inside the 
device, provides/specifies a common API for the SIM to be used as a hardware RoT, and 
facilitates the provisioning of millions of IoT devices in what regards security schemes. 

However, GSMA IoT SAFE focuses just on IoT devices, disregarding consumer devices like 
smartphones, which may represent persons activity in digital systems, namely in IoT solutions. 
Considering that ARCADIAN-IoT also focuses on persons and their activity as part of the IoT 
ecosystems, and has use cases joining exactly persons, IoT devices, Cloud services and others, 
it is relevant to consider the use of SIM as RoT in consumer devices as well. In this sense, there 
is significant background knowledge to consider. 

Focusing on Android devices, the type of smartphones we will consider for prototyping in this 
project, the operating system has concrete authorization rules for mobile applications’ 
communication with the SIM. In Android’s technical documentation about carrier functionalities 
can be found the UICC Carrier Privileges27 (UICC stands for Universal Integrated Circuit Card). 
The carrier can be understood as the SIM provider and manager, and UICC can be understood 
as the hardware secure element that has SIM profiles. Since Android 5.1 there is a mechanism 
to grant special privileges for APIs relevant to the owners of universal integrated circuit card 
(UICC) apps. The Android platform loads certificates stored on a UICC and grants permission to 
apps signed by these certificates to make calls to special APIs. Carriers have full control of the 
UICC, so this mechanism provides a secure and flexible way to manage apps from the mobile 
network operator (MNO or MVNO) hosted on generic app distribution channels (like Google Play 
store) while retaining special privileges on devices and without the need to sign apps with the per-
device platform certificate or preinstall as a system app. 

The rules on the UICC – rules that define which app can interact with the SIM – should be 
compatible with the GlobalPlatform Secure Element Access Control specification Figure 45. 

 

 

26 https://www.gsma.com/iot/iot-safe/ 
27 https://source.android.com/docs/core/connect/uicc 

https://github.com/fentec-project/gofe
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These authorization rules include the app name (full package name string) and the app SHA-1 
certificate with which the app is signed, and an 8-byte bit mask representing 64 separate 
permissions. The SHA-1 certificate is the only field that is mandatory. 

 

Figure 45 - Secure Element Access Control Architecture28 

 

Figure 45 depicts GlobalPlatform’s Secure Element Access Control Architecture. Interpreting the 
figure in the context of the Android Operating System (OS) and Android’s Carrier Privileges 
previously mentioned, it’s possible to start by understanding the Device Application as an Android 
Application (or app). For being possible for this app to interact with a SE (Secure Element) 
Application, the Secure Element Issuer, meaning the carrier in Android’s documentation, needs 
to securely provision a rule identifying that app to the Access Control Data database, which needs 
to exist in an Access Rule Application Client (ARA-C) running on the Secure Element. This 
provisioning happens via standardized GSM over the air (OTA) services used for the secure 
communication between carriers and SIMs. On the boot up of the device, an Access Control 
Enforcer (e.g. from the Android OS) reads all the rules that identify which apps can access the 
Secure Element (the SIM in the context of this project). There is also a need of a middleware API 
to access the SE Application, depicted in this diagram as part of the Access Control Enforcer. 

The research for using the SIM as RoT in Hardened Encryption reported in the next sections uses 
and departs from the concepts conveyed by GSMA IoT SAFE, Android Carrier Privileges and 
GlobalPlatform Secure Element Access Control. 

 

4.1.2.2 Research findings and achievements 

4.1.2.2.1 Library for Hardened Encryption with RoT Signatures 

One of the main outcomes of the development of the Hardened Encryption component is a library 
enabling entities in the ARCADIAN-IoT framework to secure and authenticate their data. Due to 
the advantages of the ABE paradigm and the ability of SIM to anchor the RoT in hardware, these 
two technologies were chosen to harden the standard approaches in IoT (and mobile devices) for 
encrypting and authenticating the data.  

In the joint studies made by 1GLOBAL and XLAB, several hypotheses/approaches were 

 

 

28 https://globalplatform.org/wp-content/uploads/2014/10/GPD_SE_Access_Control_v1.1.pdf 
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considered on how to join ABE and SIM. Examples are: (i) implementing the encryption 
mechanisms within the secure element itself; or (ii) establishing a secure communication channel 
for IoT devices. Not considering ARCADIAN-IoT context, both hypotheses were feasible: the SIM 
has cryptographic encryption capabilities and allows the establishment of secure channels (e.g., 
(D)TLS). However, considering the envisioned IoT solutions of the targeted domains, the first 
hypothesis was excluded due to the amount of data to encrypt (e.g., sets of photos from drones), 
which is unfeasible to be processed at the secure element. The establishment of a secure 
communication channel is a feasible approach but does not relate completely with the objective 
of the HE process of being an encryption process that is strengthened with RoT information. 
Considering the context and the objectives, the hypothesis selected for being prototyped is a 
novel combination of the SIM abilities with the ABE previously described and summarized in 
Figure 46. It consists of using SIM RoT capabilities for generating unique key material and signing 
data encrypted at the device with the ABE (or the hash of that data). In this scenario, the ABE 
encryption that allows a fine-grained access control over encrypted data is strengthened with the 
RoT digital signature, performed with unique material generated and kept at the hardware secure 
element, avoiding thus, e.g., impersonation attacks (malicious agents sending data – fake, 
corrupted or with other intention – in the name of other devices). 

 

Figure 46 - Research hypothesis for the Hardened Encryption to join ABE with SIM as RoT 

 

The library, to be deployed on devices producing and securing the data in ARCADIAN-IoT 
context, will thus consist of three main elements: 

• Software implementation of ABE functionalities. 

• SIM security applet running in a secure element of a device, enabling RoT signatures. 
o For Android devices a second SIM applet is mandatory, to receive authorization 

information related with the apps that can interact with the SIM. 

• A middleware allowing to invoke the applet from the software part, compatible with the 
software running on the device. 

The key generation in the hardware secure element can happen invoking, in the device, the 
middleware aforementioned, or via GSM standardized Over-The-Air (OTA) services. Upon the 
key generation request, the private key used for the RoT signatures is kept at the secure element 
and the public key that allows to validate the signatures is returned. Further details are provided 
in Section 4.1.3. 

4.1.2.2.2 ABE software library for Hardened Encryption 

An encryption library in an IoT setting needs to be implemented flexible enough to support multiple 
types of devices/platforms using multiple programming languages/frameworks. On the other 
hand, to implement algorithms enabling ABE functionalities, advanced cryptographic primitives 
need to be used, such as elliptic groups enabling bilinear pairings. One of the requirements of the 
HE component is that the encryption process is as lightweight as possible, hence not being a 
computational bottleneck. 

To have an efficient implementation that can be used by all the entities in the system, we 
approached the problem by developing the library in programming language Go, due to its 
performance and capabilities to be cross-compiled for multiple platforms (phones, ARM based 
devices, etc.). In addition, we implement bindings to other programming languages, such as 
Pyhton, C, Java, etc., so that the functionalities can be used by many applications, without losing 
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the efficiency of Go implementation. This extends the standard tests and applications of the ABE 
found in the literature [19, 20], where the academically developed ABE schemes were mostly 
tested on singular platforms. In fact, one of the KPI of HE component is to have efficient encryption 
process, comparable to the state-of-the art results, on multiple devices.  

We have chosen to implement two ABE encryption mechanisms, that differ in the underlying 
cryptographic construction, as well as in the functionality they offer: 

• (CP-)ABE scheme named FAME from [21]: A scheme designed to improve ABE efficiency 
that is based on the standard cryptographic assumption in pairing groups. It enables to 
encrypt data with specified policies using a single public key (that can be published at the 
start of the system). Policies can use arbitrary many attributes/roles, a feature also known 
as a large universe ABE. Originally, the scheme includes a single key management 
authority, that distributes private keys, which we decentralized using a Multi-Party 
Computation protocol, see Section 4.1.2.2.2. 

• Multi-Authority (CP-)ABE scheme (MAABE) from [22]: A scheme that by design allows to 
initiate multiple key management authorities, that each distributes their own public keys 
and manage appropriate attributes/roles in the access system. A client encrypting can 
apply mixed attributes/roles managed by different authorities to the access policy, hence 
distribute trust. On the downside, applying complex access policies decreases the 
efficiency of the encryption/decryption. Moreover, all the attributes in the system must be 
known in advance, and the number of them impacts the size of the public keys.  

Due to the efficiency, we do not use the ABE protocol directly on data, but rather in cooperation 
with standard symmetric encryption schemes, such as the AES block cypher in CBC mode or 
other. The idea is to use symmetric encryption with randomly generated keys, that are encrypted 
with ABE schemes and attached to encrypted data, see figure below.in a variety of scenarios, 
such as encrypting text, figures, streams of data, etc., with minimum computational expense. 

 

 

Figure 47 - The encryption and decryption process in HE 

 

4.1.2.2.3 SIM as hardware-based RoT for Hardened Encryption 

For using the SIM as hardware-based RoT in the Hardened Encryption process, the research led 
to the development of the several components previously introduced: (1) a SIM security applet 
able of running in any SIM form (SIM, eSIM, iSIM) that follows GSMA IoT SAFE specification; (2) 
2 versions of a middleware for the encryption component to interact with the SIM security applet 
(one for Linux-based IoT devices and another for Android devices); and (3) an Access Rule 
Application Client (ARA-C) SIM applet, to settle the authorization rules for apps running on 
Android OS to interact with the SIM. Moreover, were developed all the OTA service scrips for the 
carrier to securely install, manage and interact with the new SIM applets above mentioned, 
according to GSM standards. 
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Figure 48 - UICC general structure comprising IoT SAFE 29 

 

The SIM security applet leveraged GSMA IoT SAFE specifications and architecture, positioned 
within a UICC general structure as shown in Figure 48. Furthermore, this applet was also 
conceived to be able to receive, from the carrier, trust information related to the device where the 
SIM is. With this information the applet should perform self-protection and self-recovery actions 
(see Network-based Authorization component for more information). This component is part of a 
regular SIM profile for connectivity enablement, including the regular 1GLOBAL’s MVNO (Mobile 
Virtual Network Operator) connectivity features for such. As previously mentioned, while the 
technology was built for running in any SIM factor (SIM, eSIM, iSIM), throughout the project was 
acknowledged that the best hardware for receiving this technology are Java Card 3.0.5 ready 
chips that run SIM Operating Systems capable of running the cryptographic functions specified in 
GSMA IoT SAFE (e.g. ST4SIM-200M, an eSIM from STMicroelectronics). Even though, the 
research also showed the possibility of using the technology in chip sets with older Java Card 
versions (if some compromises were made).  

In what regards security, the physical characteristics of the embedded or integrated SIM forms 
(eSIM and iSIM) are, by design, more secure. These embedded or integrated SIM forms don’t 
allow to use a specific secure element (with specific identity and key material) in a different device 
than the one it was intended to - the eSIM is soldered in the device board and the iSIM is part of 
the integrated circuit itself, both being non-removable. 

 

As previously mentioned, the novelty of ARCADIAN-IoT SIM security applet starts by its 
compliance with GSMA IoT SAFE, which is expected to contribute to an alignment with industry 
standards. To these standards, are added the developments needed for the integration within 
ARCADIAN-IoT’s Hardened Encryption as well as with SIM-based device Self-protection and 
Self-recovery. Furthermore, no use of IoT SAFE in consumer (Android) devices is found in the 
state of the art, and in ARCADIAN-IoT we also apply the SIM as RoT in these devices with wide-
ranging market penetration. The intended scenarios for the ARCADIAN-IoT SIM security applet30 

 

 

29 https://www.gsma.com/iot/iot-safe/ 
30  ARCADIAN-IoT SIM security applet is applicable and ready to run to any SIM form, having been 
thoroughly tested with several eSIM hardware (eUICCs) from several manufacturers 
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are the following: 

• M2M bootstrap scenario: When a compliant IoT device is turned on for the first time it is 
provisioned with an ARCADIAN-IoT SIM profile, which includes the connectivity features 
and the security applet. Once the profile is activated in the device, it connects to 1GLOBAL 
network, which, by recognizing the device and the ARCADIAN-IoT SIM, requests, 
securely, over the air, the security applet to generate a public/private key pair. The public 
key is returned, provisioned to ARCADIAN-IoT key management services, and made 
available to the components that will need to validate the signatures in the payloads. 
Alternatively, the request for key generation in the secure element can be done by the 
Hardened Encryption component. For demonstration purposes, the second option was 
taken in the project. 

• Personal device bootstrap scenario: When (or before) a user registers in an ARCADIAN-
IoT app it is provisioned with an ARCADIAN-IoT SIM profile, which includes the 
connectivity features and the security applet. Once the profile is activated in the device it 
connects to 1GLOBAL network, which, by recognizing the device and the ARCADIAN-IoT 
SIM, requests, securely over the air, the security applet to generate a public/private key 
pair. The public key is returned, provisioned to the ARCADIAN-IoT key management 
services, and made available to the components that will need to validate the signatures 
in the payloads. Alternatively, the request for key generation in the secure element can be 
done by the Hardened Encryption component. For demonstration purposes, the second 
option was taken in the project. 

• Hardened Encryption process: To ensure data privacy and security, all the sensitive 
outgoing data from a ARCADIAN-IoT IoT device, or app in a personal device, needs to be 
encrypted. The process, previously described, consists of firstly encrypting the data 
(ABE), which then requests the RoT to sign the encrypted payload (its hash), and finally 
sends it to the intended service (the encrypted data and the signed hash of the encrypted 
payload). 

• Signature validation: ARCADIAN-IoT services that are intended to verify the data integrity 
(e.g., attestation component, or a decryption component) should have access to the public 
key that allows to verify the RoT signature of the payloads, being informed thus of its 
integrity. 

These scenarios were the vision, iteratively enhanced throughout project, that guided the 
research. 
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Figure 49 - ARCADIAN-IoT Hardened Encryption prototype mapped into GSMA IoT SAFE architecture31 

Figure 49 depicts the match between ARCADIAN-IoT components with GSMA IoT SAFE 
components. The final prototypes include, besides the Encryption technology, 2 SIM middleware 
interfaces, for Linux-based IoT devices and Android devices, the SIM security applet with the 
functionalities described in this section, and an ARA (Access Rule Application) applet for the 
needed authorization processes for Android apps to be able to interact with the SIM. 

 

# Method Brief description 

1 
Generate 
Key Pair 

The Generate Key Pair method is used to generate an asymmetric key 
pair. Upon successful execution both public and private keys are updated 
in the applet key store with their respective value. The public key is 
returned to the caller, and the private key is kept in the secure element, 
without any method to request/access it. 

2 
Compute 
Signature 
- Init 

The Compute Signature – Init command opens a session to compute a 
signature. The command can also be used to cancel a signature 
computation session. 

3 
Compute 
Signature 
- Update 

The Compute Signature – Update command is used to provide the applet 
with reference data to compute a signature with the private key stored in 
the secure element 

4 
Get 
Response 

The Get Response command is used to get the signed data (signed hash 
of the encrypted payload in ARCADIAN-IoT) from the SIM applet. This 
method is to be used after method #3. 

Table 19 - Main methods from ARCADIAN-IoT SIM security applet 

 

The methods in Table 19 are the key ones for fulfilling the intended functionality of the RoT in the 
HE process. These exist in the SIM security applet and are accessible from the middleware’s 
developed, for IoT devices (Linux-based according to the IoT solutions requirements) and Android 

 

 

31 https://www.gsma.com/iot/iot-safe/ 

ARCADIAN-IoT 
Hardened Encryption

ARCADIAN-IoT  SIM middleware(s)
for IoT and Android devices

ARCADIAN-IoT  SIM security applet
(and Access Rule Application applet for Android devices)
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devices. For Android devices, as previously mentioned there is a second applet that defines the 
authorization of the applications that can interact with the SIM (ARA applet). These technologies 
were developed, deployed, and target of successful unit and functional testing, and integration 
testing within the HE process in 2 IoT solutions present in the project. Some results are presented 
in section 4.1.4. 

4.1.2.2.4 Decentralized key management of ABE keys and SIM public keys 

Every encryption or authentication protocol requires a key management system, enabling a 
distribution of private and public keys, and with that it determines the access policies and anchors 
the trust. In the case of the HE component, two types of keys need to manage: 

• ABE keys: the public keys of the key generating authorities that are needed for devices to 
encrypt data with the desired policies as well as private decryption keys. 

• SIM public keys: the signature verification keys of the devices participating in the platform, 
corresponding to private signing keys embedded in SIM. 

The HE component is (due to the use of ABE and hardware-based RoT) designed to minimize 
assumptions on trustfulness of single devices and presents a step towards the zero-trust security. 
One of the identified threats in a naively designed system would be a key distribution with a central 
authority responsible to delegate (private) decryption keys and handle guaranties of public keys 
for encryption or signatures verification. 

To mitigate this issue in ARCADIAN-IoT system, we have developed and implemented two 
approaches that enable to decentralize the trust in the cryptosystem. 

• We use MAABE encryption scheme from [23] and implement a multiple key authority setup 

in order to mitigate a single point-of-failure weakness present in traditional ABE schemes. 

The scheme uses multiple Attribute Authorities that check the user’s eligibility for 

decryption keys pertaining to presented attributes and then delegates the decryption keys 

to the user, as illustrated in Figure 50. The Attribute Authorities can serve decryption keys 

for a unique set of attributes, they can serve the decryption keys for the same set of 

attributes as other Attribute Authorities, or any combination of the two. The decryption 

policy can then be adjusted to require an almost arbitrary set of attributes from various 

Attribute Authorities for the user to possess in order to decrypt the data. The decryption 

policies can therefore be constructed in a way that it forces potential malicious actors to 

compromise many (or all) Attribute, not just a single one, in order to obtain a usable set of 

decryption keys, or in a way that maximizes redundancy to make the network resilient to 

DoS attacks. To the best of our knowledge, this is the first approach to use a multi-authority 

ABE scheme in the context of IoT devices. 

 

Figure 50 - Multi-authority key management 

• We use FAME encryption scheme from [24] and implement its key management in two 

ways. As a central key authority as originally designed or alternatively as a Multi-Party 
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Computation (MPC) system. In fact, we custom-designed an efficient MPC protocol based 

on well-established SPDZ MPC scheme [25].  SPDZ is an efficient, maliciously secure 

MPC protocol that can guarantee its security, as long as there is at least one MPC node 

in the system, that is not malicious. In our case, this means that we can deploy, instead of 

one single key management authority, a system of n>1 computation nodes, that can 

securely communicate with each other and provide the same functionality. To compromise 

such a system and gain power over it, a malicious actor would need to compromise all the 

n nodes. This extends the trust in the system. The efficiency of SPDZ is based on the fact 

that the protocol can be split into 2 phases, usually named the offline and online phases. 

The offline phase is non-specific to the computation that needs to be done in the online 

phase; hence it can be done in advance. In the online phase (in our case, when a client 

requests a private key), the key management system computes the key for the specific 

ABE attributes. To have the online phase as efficient as possible, we set up the 

parameters (particularly certain prime numbers) of the SPDZ scheme to match the 

parameters of the ABE scheme. We implement the offline phase based on the Mauer 

scheme [ 26 ]. The maliciously secure protocol assumes an honest majority of the 

computation nodes. 

With respect to the management of (SIM) public signature keys we take the following approach: 

• We use the key management as a Certificate Authority (CA) that signs the public signature 

keys, assuming that the clients authenticate themselves (using ARCADIAN-IoT 

authentication). 

• We publish the public keys on the ARCADIAN-IoT Permissioned blockchain ledger. This 

anchors additional trust in the public values. 

Further actions were taken: 

• We use the ARCADIAN-IoT blockchain ledger for publishing public ABE keys in a 

decentralized manner. This way we again eliminate the need for a single (for example 

certificate) authority, that needs to be trusted. Instead, we anchor the trust on a 

decentralized blockchain ledger 

• We included in the architecture the integration of the HE component with the ARCADIAN-

IoT (multi-factor) Authentication component. The authentication is needed in the 

onboarding process of devices in ARCADIAN-IoT framework, since the key management 

authorities need guaranties that they are distributing ABE decryption keys to the 

appropriate entities. 

• We integrated the HE key management with the ARCADIAN-IoT reputation system. To be 
precise, the key management system gives information about the key requests to the 
Reputation system, that can use it to modify the trust score of a client in cases of malicious 
behaviour.  

• Finally, the system of attributes used to specify encryption policies and distribute keys is 
designed to be aligned with the ARCADIAN-IoT identity. In particular, one of the types of 
attributes that can be used is the ARCADIAN-IoT unique name of each device or person 
in the system. Hence, devices will be able to specify access policies that are exactly 
determining the receiving entities. 

4.1.2.3 Produced resources 

In this section we report on all the outcomes of the HE component that has to be noted that will 
be in part restricted access but we open-sourced certain parts of the component. 

The HE component includes multiple sub-repositories: 
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• HE ABE library: We have implemented the ABE schemes described in Section 
4.1.2.2.1.Moreover, the library can be compiled for multiple devices. It was demonstrated 
on multiple devices including servers, phones, directly in a web-browser, and multiple 
models of Raspberry Pi. See Section 4.1.3.4 for the description of the interface to the 
library and Section 4.1.4 for the efficiency report. The library was developed with modern 
paradigm of continuous testing, tools for automatic detection of security issues, and 
includes unit and integration tests. Furthermore, it was tested in Domain A and C on 
various devices. 

• The SIM security applet has also been developed and its implementation is independent 
of the device where the SIM will live and of the SIM factor. It currently has all the 
envisioned needed functionalities and throughout the project its performance (e.g. for 
performing digital signatures) was improved to a state that the partner IoT solution 
providers find to be good. The test results and its analysis can be found in section 4.1.4. 
An auxiliary applet (ARA applet, previously mentioned) is needed for authorizing mobile 
apps to interact with the SIM in Android ecosystems. 

• The device middleware, for the HE communication with the SIM secure element also has 
been developed considering Linux-based IoT devices and Android devices. To allow for 
the integration in the different use cases, it is developed both in Python and Java. Both 
the SIM security applet and the device middleware were successfully tested, integrated in 
the HE setup and in IoT solutions from partners, with several different modems and SIM 
chipset manufacturers (which may influence the middleware development (AT) 
commands or the applet behaviour). 

• HE Key Management: We have implemented in Go a complete key management system 
that manages ABE keys as well as the signature public keys and custom certificates, as 
described in Section 4.1.2.2.2. The system is easy to deploy since it is fully Dockerized. 
In particular, it can be deployed in 3 ways: 

o As a multi-authority service, i.e., handling MAABE keys. 
o As a decentralized service, i.e., as a Multi-Party Computation system handling 

ABE keys of the FAME scheme. 
o As a centralized service, i.e., as a trusted authority that handles FAME keys. 

See Section 4.1.3.4 for the description of the interface. 

• HE Demos: We provide a repository with demos of how to use the HE library, RoT 
signatures and HE key management with multiple APIs, including Python, Go, Java and 
JS. For example, a demo that uses Python API shows how to interact with a HE key 
manager, encrypt data with a specific ABE policy, sign the data with SIM based RoT, and 
decrypt the data if the policy allows it. 

• HE Android App Demo: We provide a demonstration app showcasing how to 
encrypt/decrypt data inside an Android App and enhance the encrypted payloads with 
RoT signatures. 

As part of the XLAB’s dissemination activities, we also provide open-source code, that helps 
developers adapt and integrate ABE technologies into other projects. In particular, we made the 
following repository public: https://github.com/xlab-si/AHE It includes the HE component stripped 
of all the other ARCADIAN-IoT limited subcomponents. With it, developers can use the ABE 
libraries, deploy a key management, and integrate with their own components, such as (non-
ARCADIAN-IoT) authentication. It includes demos to help the adoption. 

4.1.3 Design specification 

In this subsection we provide further design specifications. Firstly, we provide the architecture 
view explaining how the subcomponents of HE interact with each other. We enhance it with a 
sequence diagram, explaining how the interactions happen during the onboarding of a device, 
encryption, and decryption process. Finally, we provide information on how to use the HE 
component by providing the interface description of the HE library. 

https://github.com/xlab-si/AHE
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4.1.3.1 Logical architecture view 

Architecture view of the HE with ABE encryption and SIM signatures is visualized in Figure 51. 

 

Figure 51 - Logical architecture view of HE 

 

• HE library is a software library developed in Go language with binding to Python, Java, C, 
JS that can be deployed on ARCADIAN-IoT devices, so that they can secure their data at 
rest or data to be transmitted. The library provides a simple API to encrypt and decrypt 
data with the ABE paradigm, sign the encrypted data with SIM based RoT signatures, 
verify the signatures, and interface with other components to obtain private or public 
cryptographic material. 

• Middleware is a connecting subcomponent allowing the HE library to request predefined 
actions from the SIM subcomponent through the modem (via AT commands) 

• ARCADIAN-IoT SIM profile will live in a hardware secure element, having a security applet 
allowing to preform actions with guarantied security (have as baseline GSMA IoT SAFE 
specifications). In particular, the implemented applet enables generating private and 
public cryptographic keys, where the private keys remain secured in the SIM (the SIM 
provides no way to retrieve these secrets). Furthermore, the applet can use the generated 
keys to cryptographically sign data with RoT information. 

• HE key management is a component handling key distribution. It can be deployed as a  
decentralized system. To enhance trustworthiness, it publishes the public material on the 
blockchain to guarantee that it was not maliciously modified. Furthermore, it defines 
distribution rules for the private keys based on the ARCADIAN-IoT Authentication 
component.  

4.1.3.2 Sub-use cases 

The main use case of the HE component is to enable efficient encryption/decryption with RoT 
information that can be applied to as many IoT scenarios as possible: for example, it will be 
evaluated in an emergency and vigilance service with drones, industrial IoT devices and with 
medical IoT data. Besides the latter main use case, that suffices for a standard, non-compromised 
working of the ARCADIAN-IoT platform, we also report on the following sub-use case invoked in 
the case of a security incident. 

4.1.3.2.1 SIM security applet and HE in device self-protection and device-self recovery 

ARCADIAN-IoT security applet (and its action within HE component) will be used as well for the 
device self-protection and self-recovery. Considering its independence of the device itself (it has 
its own hardware and software inside the secure element) and its means to be securely reached 
only by the network operator, it is in a unique positioning to act in situations of compromised non-
cooperative devices. In the final prototype developed for the project, the security applet is already 
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ready for receiving, through proven secure GSM over-the-air services, information about the 
trustworthiness of the device where the SIM is. When receiving this information, the security 
applet prototype has implemented 2 functionalities that go beyond any known state of the art (as 
the HE component already does): 

1. If the device trustworthiness level indicates that the device is compromised, the SIM 
security applet will refuse to use its cryptographic processes to sign HE payloads. 
Complementing other protection measures, e.g., based in cellular networks authorization 
processes, this will ensure that a compromised device, that could use other forms of 
communication to reach ARCADIAN-IoT components (e.g. WiFI), will not be able to 
deceive any ARCADIAN-IoT component that receives its payloads, because these will not 
be signed by the RoT. By not signing the payloads, the security applet is also informing 
ARCADIAN-IoT components deployed in the device that the device is found to be 
compromised, and these components can act accordingly. 

2. Complementing the previous action, when a device is found to be trustworthy after a 
period of being compromised, the SIM security applet also has means to be informed and 
act upon this information. In this case its regular operational behaviour within the HE will 
resume. This action allows other ARCADIAN-IoT components living at the device to be 
informed and to recover their normal behaviour as well.  

These security measures are triggered by ARCADIAN-IoT network-based authorization 
enforcement component (described in D4.3). This component, that lives in the cellular network 
operator core infrastructure, will also act upon devices trustworthiness information, and therefore 
it is in a unique position to distribute trustworthiness information to the devices’ hardware secure 
element (the uniqueness of the position is due to the access to the security information and the 
means to reach SIMs according to GSM proven secure standards). 

4.1.3.3 Sequence diagrams 

The sequence diagram in Figure 52 explains how the HE subcomponents for the ABE encryption 
and SIM signatures interact during the onboarding of a device, encryption, and decryption 
process. As one can observe in the sequence diagram, during the onboarding phase the HE 
library obtains from the SIM a public signing key, that is then confirmed by the key management 
and published on the permissioned blockchain. On the other hand, the private keys are obtained 
from the HE key management where the device needs to authenticate itself. In the phase of 
encryption, the library encrypts data and uses SIM to obtain RoT signatures. In the decryption 
phase the encrypted data is first verified, where the public key is checked ether by checking the 
certificate or by checking the permissioned blockchain, and then decrypted. 
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Figure 52 - The sequence diagram of the HE component with internal and external interfaces 

 

4.1.3.4 Interface description 

The HE subcomponents interface with external ARCADIAN-IoT components in the following way: 

• HE key management uses the Permissioned blockchain component to publish public 

cryptographic material. This adds additional trust in the system anchoring it on a 

decentralized ledger. In particular, the public ABE key of each key generation authority is 

published, as well as the public signature verification keys, see Section 4.2 for the details. 

• HE key management depends on the Authentication component to ensure that the private 

cryptographic keys are distributed to the appropriate entities. In particular, each device or 

person will need to authenticate itself to the HE key management authorities to obtain the 

needed keys for the access/decryption of data. 

• HE key management sends information about private key requests to the Reputation 



D3.3: Horizontal Planes - final version 

 

© ARCADIAN-IoT Consortium 2021-2024              Page 131 of 167 

system that can use it to modify the trust score of a client in cases of malicious behaviour. 

• HE component is used, besides by the devices in the framework, by other ARCADIAN-

IoT components: 

o Remote Attestation component requires the attesters to use the HE encryption 

library (and through it SIM) to securely respond to an attestation event with private 

claims and hardware-based RoT signatures. Furthermore, the Remote Attestation 

component uses the HE key management to obtain appropriate keys for the 

attestation procedure. 

o Self-aware Data Privacy component uses HE encryption library to enforce privacy 

policies by encrypting the data in a database. 

o Self-recovery component uses HE to encrypt the data that is stored for recovery 

with a policy that allows appropriate recovery authorities to decrypt it and perform 

the recovery. 

o Biometrics component uses HE component to securely store and transmit private 

biometrical data. 

4.1.3.5 Technical solution 

4.1.3.5.1 Deployment architecture view  

The HE components are meant to be deployed in the following way: 

• HE encryption library with RoT signatures needs to be deployed (installed) on any device 
that performs encryption/decryption/signature operations. In the case of ARCADIAN-IoT, 
these are IoT devices such as drones, phones, servers, web applications running in 
browsers, and other ARCADIAN-IoT services. Note that if the device does not have SIM 
capabilities, it can still use HE library for encryption and decryption where signatures do 
not have a hardware-based RoT properties. 

• HE key management is deployed as part of the ARCADIAN-IoT service. In particular, it is 
a Dockerized service that can be deployed on one or multiple (decentralized) servers. It 
can be accessed using REST calls, see the following section.   

4.1.3.5.2 API specification 

In this section we detail the interface to the functionalities of HE. 

HE library 

We provide APIs for multiple programming languages, while in this section we focus only on the 

use of the library with Python bindings, since other interfaces are similar.  

Installation 

The core of the library is implemented in Go. We have cross-compiled the shared objects (e.g., 

`libahe.so`, `libahe.h`) that need to be downloaded before the use of the Python bindings. To 

install the Python library, we provide an automated installation flow with `pip`. 

The encryption part of the library is a pure software implementation and has been tested on AMD 

as well as ARM processors. On the other hand, RoT signatures are provided by the SIM security 

applet through the device middleware provided for that purpose. The security applet needs to be 

in a SIM profile, which it is placed in the devices when the SIM with it is provisioned or the SIM 

card with it is inserted in the device. It can also be provisioned Over the Air at the device at any 

moment, according to eSIM/iSIM-related GSMA specifications. In this project, the device 

middleware is compiled jointly with the remaining code from the HE component. 

HE library use 

Assuming the library has been installed, a device can start using it functionalities. First the library 

needs to be imported: 
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Before a device can sign payloads, it needs to create its signing key in its SIM, and output the 

verification key. If the device has no embedded element, then it cannot produce RoT signatures 

and this step is skipped. 

 

One can specify the access policy and use the library to encrypt data: 

 

The above assumes that a device has obtained public keys (the value `pks` above) from the key 

management authorities. The policy can be specified with a Boolean formula that determines 

which attributes are needed to decrypt a message. For example, one could replace in the above 

‘auth1:at1` (i.e., the attribute 1 that has been created by authority 1) with the unique name of a 

device used in ARCADIAN-IoT framework, or a group of receivers of the message, e.g.; system 

administrators, etc. 

Assuming that the device has a SIM with ARCADIAN-IoT security applet in it, it can sign the 

encrypted data. If multiple ciphertexts were created with different access policies, they can be 

signed together. 

 

A receiving device can validate the authenticity of data (directly on the ciphertext) 

 

and if it has appropriate attribute keys (the value `ks1` below), it can decrypt the corresponding 

ciphertexts: 

 

If the device does not possess the access rights, an error is raised. In Figure 53 more 

documentation is available. 
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Figure 53 - Snippets from the HE documentation 

 

HE key management 

This subcomponent is deployed as a web service that can be accessed by REST calls. 

• Requesting public ABE key: The public ABE key can be obtained by a GET request to 
arcadianHEaddress/pubkeys. The response is a JSON representing the public key of the 
ABE scheme. Note that the public key can be requested also from the Permissioned 
blockchain or in the case of decentralized key management, from multiple authorities 
(checking a consistent response). HE library includes functionalities to unmarshall the 
public key to an object that can be used by encryption functionality. 

• Requesting private ABE keys: Private attribute keys can be obtained by a POST request 
to arcadianHEaddress/get-attribute-keys. It expects to submit a JSON with fields uuid 
(universal unique identifier of the client), attribs (an array of attributes for which the client 
request private keys) and token (an authentication token proving the identity of the 
client). The server responds with a JSON representing a private key. In the case the key 
management service is decentralized, the request needs to be sent to all of the key 
management servers, which initiate an MPC protocol and deliver a private key. HE 
library includes functionalities to unmarshall the private key to an object that can be used 
by decryption functionality. 

• Publishing public signature key: A client can publish its public signature key by a POST 
request to arcadianHEaddress/pub-signature-keys. It expects to submit a JSON with 
fields uuid (universal unique identifier of the client), verkey (public signature key, i.e. 
verification key) and token (an authentication token proving the identity of the client). The 
server responds with a JSON representing a certificate proving that the public 
verification key truly belongs to the client. 

 

4.1.3.5.3 Security aspects 

The ABE technology is relatively new and has been deployed in relatively small number of 
projects. Nevertheless, the security of it has been cryptographically proven to depend on well-
established cryptographical assumptions, similarly as the everyday used standard public key 
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schemes. In particular, the implemented ABE schemes depend on the hardness of finding a 
discrete logarithm is certain elliptic (pairing) groups, known as BN256. This is a standard 
assumption, whose main threat in the future is the development of a quantum computer (as it is 
with the majority of commonly used cryptography). Enhancing the system to a quantumly secure 
one is possible but would majorly decrease the efficiency. 

The SIM technology is used for several decades for protecting subscribers' identity and the key 
material that allows to authenticate and attach to cellular networks. This technology continues to 
be well-accepted as secure. While there may be security optimizations to ARCADIAN-IoT’s SIM 
security applet, its main functionality is assumed to be secure as well. The secrets used to sign 
the encrypted payloads are generated in the secure element and never leave it (just the public 
keys are provided to allow the signature validation). This happens because there is no known 
form of extracting the secrets from the SIM secure element, particularly if it is an embedded or 
integrated form (which makes it almost impossible to clone the secure element). 

 

4.1.4 Evaluation and results 

In this section we report on the main outcomes and results of the evaluation of the Hardened 
Encryption supported by SIM as RoT. 
 
KPI1: Provide an encryption library enabling fine-grained access control over data with APIs in at 
least 4 programming languages and demonstrate its use on at least 2 types of devices/platforms. 
 
As stated in the previous sections, one of the produced resources is an encryption/decryption and 
signature library enabling the use of ABE for fine-grained control over data. The library has APIs 
in 5 programming languages: besides Go that was chosen for the implementation of the core 
functions, it has bindings to Python, Java, JS, and C. The library was compiled for multiple devices 
and its use was demonstrated on Android phones, Linux based servers, the library was integrated 
to run directly in a web-browser of a client using a web-service, and multiple models of Raspberry 
Pi. The tests of the library were done as part of WP3 development process, as well as WP5 
component validation. 
 
KPI2: Add Root of Trust information to encrypted data with SIM based signatures. 
As part of work in T3.2, a mechanism for hardware-based RoT was developed.  As described 
above, this includes a release of an applet running on SIM cards (and SIM form, like SIM, eSIM 
or iSIM), as well as the development of the middleware that enables a user’s device to 
communicate with the it. In fact, two versions of the middleware were developed: 

• Python middleware supporting RoT signatures in Linux-based IoT devices with an 
attached SIM, such as the Drone being used in the project, Raspberry Pi based devices, 
etc. 

• Java based middleware for RoT signatures in Android devices 
 
Both middlewares were integrated in the beforementioned encryption library with unified interface. 
In fact, the library enables to use non-hardware-based signatures and upgrade to RoT signatures 
with minimal effort/change (assuming the device has an SIM). 
 
KPI3: Provide a secure and scalable key management and delegation synchronized with the 
decentralized identity management, multi-factor authentication and self-recovery. 

As described in Section 4.1.2.2.2 we have implemented key management systems for both FAME 
and MAABE schemes. Moreover, we have put an additional effort to decentralize the FAME key 
management using MPC. We have tested it to handle hundreds of simultaneous key requests. 
Moreover, we have provided Docker scripts to simplify the deployment. The key management 
was integrated with ARCADIAN-IoT identity management and multi-factor authentication to define 
and enforce access rights to the users of the system. Moreover, the ARCADIAN-IoT Self-recovery 
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component uses the system to allow secure distribution of recovery access. 
In Table 20 we report on the response times needed for the (network of) key servers to return a 
requested private key, corresponding to attributes of ABE. All the tests were performed over 
LAN. All the response times are acceptable for a web-communication process.  
 

Key management 

response time 

1 attribute 5 attributes 10 attributes 15 attributes 20 attributes 

FAME centralized 

key management 

51ms 70ms 98ms 112ms 183ms 

FAME 

decentralized key 

management with 

3 MPC nodes 

212ms 221ms 359ms 583ms 679ms 

MAABE 

management 

(response time of 

one authority)  

5ms 7ms 11ms 15ms 17ms 

Table 20 Response time of the HE key managements 

 
KPI4: Provide efficient implementation of the process with encryption times comparable to the 
state-of-the-art results on multiple devices, and with RoT signatures in acceptable time for the 
communication processes. 

 
The main reason for why we chose to develop the encryption library from a Go-based core, was 
that the existent cryptographic libraries in Go provide a secure and performance-wise optimized 
basis for the implementation of high-level protocols.  This helped us achieve fast evaluation of 
functionalities offered by the library. Furthermore, Go can be compiled to binaries that can be 
used by other programming languages, without a significant efficiency slowdown. In fact, we have 
tested this claim with our implementation and observed no major slowdown when using, say, 
Python in comparison to Go. Below we report the average encryption and decryption times using 
the HE library. Tests have been performed on a laptop with 1.70GHz AMD Ryzen 7 PRO 4750U, 
an Android phone Samsung A33 with 2.4 GHz Cortex-A78 processor, and on a Raspberry Pi 3 
Model B+ with 1.4GHz Cortex-A53. Note that the processes depend on the complexity of the 
access policy, where more attributes used result in higher times. As explained in Section 
4.1.2.2.1, we are using the ABE scheme to encrypt a random key, that is then further used for 
encrypting data with a symmetric encryption scheme. Hence, we report in Tables 15, 16 only on 
the overhead created by the ABE, while the performance of symmetric schemes, such as block 
ciphers using AES, is well understood, optimized and depends on the size of encrypted/decrypted 
data. 

 

MAABE 
scheme 

1 attribute 5 attributes 10 attributes 15 attributes 20 attributes 

Encryption 
(laptop) 

4ms 14ms 30ms 43ms 58ms 

Decryption 
(laptop) 

4ms 10ms 22ms 30ms 41ms 

Encryption 
(phone) 

9ms 26ms 46ms 68ms 90ms 
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Decryption 
(phone) 

6ms 23ms 62ms 115ms 185ms 

Encryption 
(Raspberry Pi) 

1.2s 4.7s 8.7s 12.9s 16.9s 

Decryption 
(Raspberry Pi) 

0.6s 3.1s 6.2s 9.3s 12.5s 

Table 21 - Encryption and decryption overhead for using MAABE scheme 

 

FAME scheme 1 attribute 5 attributes 10 attributes 15 attributes 20 attributes 

Encryption 
(laptop) 

6ms 34ms 117ms 236ms 436ms 

Decryption 
(laptop) 

7ms 7ms 7ms 8ms 8ms 

Encryption 
(phone) 

19ms 52ms 169ms 352ms 597ms 

Decryption 
(phone) 

19ms 20ms 20ms 21ms 21ms 

Encryption 
(Raspberry Pi) 

1.2s 4.7s 8.7s 12.9s 16.9s 

Decryption 
(Raspberry Pi) 

0.6s 3.1s 6.2s 9.3s 12.5s 

Table 22 - Encryption and decryption overhead for using FAME scheme. 

 

To argue that we have achieved the KPI, we compare our results to the state-of-the art. For the 
main reference we take [27], where an ABE scheme was implemented in Java and benchmarked 
on a laptop and an android phone. the following computation times were reported: 

• Encryption: 
o A laptop with 1.60GHz Intel Quad-Core i7: ~160ms for a policy with 5 attributes   
o An Android phone with 1.60GHz Intel Atom Z2460:  ~2.5s for a policy with 5 

attributes 

• Decryption: 
o A laptop with 1.60GHz Intel Quad-Core i7: ~250ms for a policy with 5 attributes   
o An Android phone with 1.60GHz Intel Atom Z2460:  ~6s for a policy with 5 

attributes 
 

Firstly, we note that a direct one-to-one comparison between our results and [28] cannot be made, 

since we are using different ABE schemes and benchmarking it on a slightly more performant 

machine. Nevertheless, the performance numbers were improved and indicating that the 

technology can be practical in IoT scenarios. The improvements could be attributed to the 

following. On one hand we used a programming language that can be compiled for the specific 

devices which gives a better performance than Java used in the reference benchmarks. Secondly, 

the cryptographic libraries, that we used in the implementation and are using elliptic curves as the 

underlying mathematical object, have been improved in the recent years. Moreover, the 

cryptographic schemes have been improved to a better efficiency as well. In particular, the 

MAABE scheme accelerates on the encryption while the complexity of the FAME’s decryption 

does not increase majorly when decrypting ciphertexts with complex policies. In the case of 
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applying the scheme on phones, we also point out major hardware improvements making them 

almost as powerful as laptops. On the downside, it seems that the applicability of ABE technology 

on devices with limited capabilities is still bounded to use-cases where relatively simple policies 

are applied.  

As for the SIM RoT signature process and the KPI “add Root of Trust information to encrypted 
data with SIM based signatures”, it is known that the computing power of any SIM form is limited. 
This was a concern since the beginning of the project and, in fact, the research hypothesis 
formulation considered exactly this when 1GLOBAL and XLAB decided that the SIM should sign 
the hash (SHA256) of the encrypted payload and not the encrypted payload itself. This allowed 
to perform a process with very low computational effort in the SIM, allowing it to act as Root of 
Trust by digitally signing the hash of the payloads sent by the devices. 
The final prototype was assessed with IoT solution providers of the consortium, within their own 
solutions, and no concerns related with the SIM performance were raised. More specifically, and 
in lab, tests to the ARCADIAN-IoT security SIM applet were done with (1) a SIM card reader 
(Mitsai MCR3334BK), (2) a Raspberry-Pi 3 and (3) an Android device – Samsung S22. With these 
devices, were also tested 2 different SIMs from different manufacturers: STMicroelectronics 
ST4SIM-200M (STM) and EastCommPeace ST33G1M2 (ECP). 
The performance assessment was done for each of the several procedures needed, for each 
device and SIM manufacturer. As the objective was to have “RoT signatures in acceptable time 
for the communication processes” are presented next the worst and best cases from the myriad 
of devices and SIMs tested (values represent the average of 10 executions of the process in the 
device and SIM mentioned). 

• Security Applet Selection: The worst case is of 2936,6ms, in the card reader with the 
ECP SIM. In the same device with the STM SIM the applet selection would take just 
807,9ms. 

• Generate Key Pair: The worst case is of 454,3ms in the Android device with the ECP 
SIM. The best time was found in the Raspberry Pi with the STM SIM: 192,7ms. 

• Compute Signature Init: The worst case is of 35,1ms in the Android device with the STM 
card. The best time gathered was in the card reader with the ECP SIM: 12,5ms. 

• Compute Signature Update: The worst case is of 447,9ms in the Raspberry pi with the 
ECP card. The best time was of 110,7ms, in the same device with the STM SIM. 

 
It is important to understand that the signature is performed with the Compute Signature Update, 
and that the remaining commands are of applet selection and process initialization. Therefore, 
what is expected to be more relevant in terms of performance is exactly the process of performing 
the signature, as the other commands are not executed often. In the worst-case scenario of the 
tests made, performing a signature of a payload would take less than half a second – in the best-
case scenario it would take ~0,1 seconds. This led to the assessment made by the IoT solution 
providers, that the SIM performance was not compromising the performance of the functionalities 
of their solution. 
 

4.1.5 Future work 

In what regards the use of SIM as Root of Trust, 1GLOBAL envisions to start exploring the 
technology commercially with its IoT clients, coupling its connectivity products with these new 
security features. 
 

4.2 Hardened Encryption with cryptochip 
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4.2.1 Overview 

4.2.1.1 Description 

The Hardened Encryption component with a crypto chip system has been designed and tailored 
specifically for industrial scenarios where IoT devices have limited or restricted capabilities. This 
system, on one hand, includes crypto chips (as add-on module or embedded into an IoT device) 
enabling that the IoT device’s master firmware is equipped with a firmware agent for handling the 
keys. On the other hand, the system also includes the IoT middleware software platform (specific 
for the selected scenarios); this platform incorporates features for (i) key management of crypto 
chip keys, (ii) ARCADIAN-IoT integrated security systems management as end point, (iii) a 
software agent (running into Middleware software – cloud side) for handling the decentralized 
authorization (as a second protection during authorisation, on top of hardware encryption) and 
(iv) interface relaying with 3PP platforms by API and RabbitMQ.  

4.2.1.2 Requirements 

A recall of the high-level requirements that have been previously defined and provided in 
deliverable D2.4 [2] is given below. 

Requirement 4.1.1 – Encryption mechanism: Enable secure and lightweight encryption with 
access policy strengthened with hardware-based RoT information. 

Requirement 4.1.2 – Secure key-generation: Provide secure and scalable key management and 
delegation synchronized with the decentralized identity management. 

4.2.1.3 Objectives and KPIs 

With the aim of fulfilling the project’s objectives, the Hardened Encryption component will be 
evaluated against the following KPIs that are related to the main project objective “Provide a 
Hardened Encryption with recovery ability” (as recalled in the introduction). 

 

KPI scope  

Provide secure and scalable key management, in both device & middleware sides, covering 
all operations lifecycle situations (creation, fulfilment, regular data communications, 
removal, recovery) for devices fleets. 

Measurable Indicator 

Simplicity of process, respecting the security conditions. 

Agnostic management operations capability (applicable to manipulation of crypto chip 
producer firmware into device side, applicable to any cloud platform enclosing the 
middleware component into the cloud side).  

  

Benchmarking 

Similar security products provisioning methods and tools. 

  

Target value Achieved value 

Less than 5min provisioning (for any 
scenario) into device side, with GUI in place 
and how to procedure, into device side. 

5 min provisioning (for any scenario) into 
device side, performed by an experienced 
user familiar with device firmware GUI. 
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Less than 2min provisioning (for any 
scenario) with web dedicated page in place 
and how to procedure, into middleware side. 

2 min provisioning (for any scenario) into 
middleware side, performed by an 
experienced user familiar with middleware 
GUI. 

  

  

KPI scope  

Provide efficient implementation of the process at a device and the middleware side in 
acceptable time for the communication (telecommunication protocols and upper layer OSI 
protocols wise) processes. 

Measurable Indicator 

T1_E – Time duration between sensors data stream aggregation and encrypted payload 
generation, by device firmware agent designed and build for encryption. This indicator is 
applicable for sense device – to – IoT platform. 

T4_D – Time duration between encrypted payload receiving and actuators “in clear” 
commands, by same device firmware agent. This indicator is applicable for sense IoT 
platform – to – device. 

T3_E – Time duration between encrypted TLS payload received from IoT platform, 
decryption by certificate applied, and encryption with correspondent hardware key of the 
payload, by dedicated local middleware agent. This indicator is applicable for sense IoT 
platform – to – device. 

T2_D – Time duration between receiving the encrypted payload received from device and 
decryption by correspondent hardware key of the payload, by dedicated local middleware 
agent, and relaying forward by TLS to IoT platform. This indicator is applicable for sense 
device – to – IoT platform. 

Target value Achieved value 

T1_E lower than 2sec 

T4_D lower than 6sec 

T3_E lower than 4sec 

T2_D lower than 8sec 

T1_E lower than 2sec 

T4_D lower than 5sec 

T3_E lower than 4sec 

T2_D lower than 7sec 

  

4.2.2 Technology research 

4.2.2.1 Background 

4.2.2.1.1 Crypto chip System 

The usage of crypto chips for hardened encryption processes is particularly pertinent for industrial 
IoT devices, where computing power capacity is limited and unable to run TLS type certificates, 
while security of both the transmitted and received streams of data from / to field sensors and 
actuators and the corresponding data management platforms is crucial. The proposed crypto 
chip-enabled hardened encryption solution provides robust, scalable, application-agnostic 
security with both crypto chip and device vendor neutrality. Besides the core feature of symmetric 
encryption, it is being designed to integrate with / leverage from the additional security features 
from other ARCADIAN-IoT components, namely Authentication, Remote Attestation, Reputation 
System, Network Base Authentication, Self-Aware Data Privacy and Behaviour Monitoring. The 
solution is aimed at being highly scalable, easy to be implemented with any type of IoT platform 
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and by any IoT device vendor and resolves main cyber security aspects for grid & other critical 
commercial verticals, relating to industry 4.0. For the currently prototyped industrial IoT device, a 
crypto chip designed by STMicroelectronics was chosen, which is by default an authority for 
issuing Root of Trust products. To confirm completely the chain of trust, middleware software 
component of Hardened Encryption / crypto chip system is planned to be tested by a penetration 
testing formal certified entity. 

 

4.2.2.2 Research findings and achievements 

4.2.2.2.1 Hardened encryption with crypto chip system 

In this section we report on the design of the crypto chip-enabled Hardened Encryption, including 
subcomponent’s design, its critical challenges (that were passed successfully) and the 
correspondent achievements. The component consists of following parts: hardware designed for 
the secure communication of otherwise computationally limited devices, and the middleware 
communicating with the devices. 

4.2.2.2.2 Hardware challenges and achievements 

The following components have been developed: 

• 1 industrial IoT device motherboard, with crypto chip working as an electronic sub system 
(dedicated power supply and power management, communication paths and channels 
with motherboard microcontroller); board was finally successfully designed, tested in 
simulator, executed in a small series, and tested practically with electronic tools under a 
large set of scenarios (continuity, working stages, abnormal interruptions, unstable power 
supply, etc.); main challenge stayed with designing a board which can easily adapt any 
crypto chip model, without large redesigning / redeployment; practically, BOX2M 
innovates a way for fast adaption of crypto chips into MCU powered IoT devices  

• 3 extension boards, running the grid interfaces roles, for data gathering (2 different boards) 
and OTA / remote / remote commands (1 dedicated board); all boards were similarly 
tested individually, but also integrated electronically with motherboard, to test the whole 
integrated system (as power management and communication internal buses), using 
specific real sensors and actuators, into BOX2M laboratory; main challenge stayed with 
designing from scratch a robust plug-in system, solid enough to support cooperation with 
a mother board with embedded security, and be focused on grid & utilities domain, mainly, 
by sensors type interfaces 

• 9 communication boards (GSM, UMTS, LTE, LTE-M, NBIoT, 5G, ETH, WiFi, ETH & WiFi 
combined), from which 8 were completely designed and executed (5G board deployment 
was aborted, due to an errored technical data sheet provided by 5G radio module vendor, 
which generated a not working board – by wrong antennas layout and number), All 8 were 
tested completely; all mobile broadband boards have by default an xSIM too, so tests were 
done with both a regular SIM and an xSIM; on top of regular QoS for telecommunication, 
it is important to validate, with each communication system, impact of KPIes (because 
total end-user time, which operates data from IoT platform, on both ways (from device to 
IoT platform, and viceversa) are including not just the pure encryption and decryption 
times (KPIes T1_E, T4_D, T2_D, T3_E), but also the telecommunication duration for 
carrying the encrypted data between device and cloud hosting the Docker containing the 
middleware as encryption system component; challenges were to release mobile 
broadband boards with both xSIM and regular SIM, and to manage balanced the power 
supply management and internal communication channels between motherboards and 
telecommunication systems 

• Specific hardware testing simulators were designed and built into lab, and used intensively 
during project lifecycle, e.g. multiple sensors blocks (from various vendors, various 
models), actuation field elements blocks, mobile kits for drive testing   
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Figure 54 - Hardware high level architecture 

4.2.2.2.3 Firmware challenges and achievements 

The main challenge was to deploy a master firmware system, accommodating into a MCU loaded 

master structure, subsystems firmware, dedicated for each technology aspect: boards wholistic 

management, data management, encryption and decryption agent by adapting the supplying 

crypto chip vendor library and keys repository, firmware of each telecommunication module. 

Challenge was successfully passed, firmware was designed, deployed and tested, ending with 

an end-to-end encryption and decryption operations pointing an IoT platform and running all life 

cycle scenarios. For edge computing agents, network management agents, telemetry agents and 

sensors data gathering agents, we have reused part of existing registered under intellectual 

property of BOX2M “M0 firmware”. Encryption & decryption system device component (from 

firmware perspective) can be integrated in any other device vendor firmware, and can adapt 

crypto chips of the same type, or from different vendors, by adapting their working libraries.   

Due to complexity, it was needed to design and deploy a CLI (command line interface) tool, to 

operate faster firmware changes, especially during long testing processes. 

4.2.2.2.4 Middleware challenges and achievements 

The main challenges were to deploy the subcomponent as a modular component, Docker 
contained, configurable API and RabbitMQ ready with any 3PP system, including the integration 
with ARCADIAN-IoT security systems used by Hardened Encryption such as Remote Attestation, 
Reputation System, Self-aware Data Privacy, Decentralized authentication. Another challenge 
was the fast integration with a live IoT platform, in order to have the capability to run whole 
experiments proposed. These solved challenges helped us practically to achieve first 2 main 
deliveries, respectively encryption & decryption system (both ways) and API readiness to continue 
the specific ARCADIAN-IoT systems integration. These great achievements could not had been 
done without firstly securing a proper hardware component and firmware design and deployment, 
which shows, from applied research perspective, that without knowing in detail the domain of 
application, it cannot be released an effective product to address / resolve field problems, as it is 
the grid security on microcontroller powered devices. Middleware was stressed into a live IoT 
traffic, generated by BOX2M lab setup, with real sensors and using as prefab payload thousands 
of parameters edge collected from these, to assess the volume scalability and measure times for 
encryption and decryption operations. For telemetry, Docker orchestration and TLS interfacing, 
we have reused part of existing registered under intellectual property of BOX2M “Industrial 
Telemetry Platform”. Middleware included a front end for lifecycle operations of provisioned 
assets and a service operation center, with events and alerts configurable for managed assets. 

To better test the integration with other security system, we had to design and deploy an IoT 
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devices software simulator, in scope of simulation of fleets of devices. 

 

Figure 55 - Middleware architecture 

4.2.2.3 Produced resources 

In this section we report the implementation of the HE component and the functionalities of the 
final prototype. With respect to the crypto chip-enabled hardened encryption, the highlighted 
produced resources are: 

Hardware: 

• Industrial IoT hardware device (see Figure 54 and Figure 56) 

• A complete IoT stress test environment (hardware set-up lab, cloud set-up, service 
operation centre, defined measurements, IoT devices simulator) 

 

Firmware and software – private (in scope of IP registration): 

IP registration as “M6 firmware” ongoing: 

• Device firmware & its CLI application for management  

• Encryption & decryption firmware agent 

 

IP registration as “Hybrid Encryption Middleware” ongoing: 

• Middleware software application 

• Encryption & decryption middleware agent 

• API configurator 

 

Software – public (shared with consortium partners): 

• API integration with 2 live IoT platforms (BOX2M and Martel), to have the test bed 
operational end-to-end, and to demonstrate versatility of security system integration using 
2 different methods (API and RabbitMQ), e.g. Self-Aware Data Privacy 

• Integration with all involved security systems, tested and validated, via RabbitMQ interface 

Reference link: BOX2M_API & RabbitMQ - integration documentation.pdf 

under WP5 – Task 5.2 - 5.4 Use cases implementation – Domain B 

 

https://ipnpt.sharepoint.com/:b:/r/sites/arcadian-iot/Shared%20Documents/WP5/Task%205.2%20-%205.4%20-%20Use%20cases%20implementation/Domain%20B/BOX2M_API%20%26%20RabbitMQ%20-%20integration%20documentation.pdf?csf=1&web=1&e=CVCqgT
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Figure 56 - Hardware prototypes 

 

4.2.3 Design specification 

4.2.3.1 Logical architecture view 

4.2.3.1.1 Hardened encryption with crypto chip system 

The architecture of the Hardened Encryption with the crypto chip system is presented in Figure 
57. 

 

Figure 57 - Hardened Encryption (with crypto chip) system architecture 
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4.2.3.2 Sub-use cases 

4.2.3.3 Sequence diagrams 

The sequence diagram in Figure 58 and Figure 59 explains how the different subcomponents of 
the crypto chip-enabled Hardened Encryption interact during the onboarding and during traffic 
exchange. 

 

 

Figure 58 - Device onboarding 
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Figure 59 - Device traffic management  

 

4.2.3.4 Interface description  

A dedicated API orchestrator (part of the Middleware) was designed and can set up secure TLS-

based communications with external systems. The API orchestrator enables rapid generation of 

multiple API channels (based on different criteria) which can operate simultaneously for the 

different integration purposes. This was used for interfacing with 3PP IoT platforms and with 

Remote Attestation System. 

In parallel with the API, Middleware has designed and deployed a RabbitMQ interface, used for 

integration with all security systems. 

Moreover, the IoT Middleware receives HTTP Signature for secure registration of constrained IoT 
devices and implements DIDs on behalf of IoT devices for secure authentication. 

Partner Definition Channel Exchange 

IPN 
Remote 

Attestation 

API 

(Direct Code 
Integration) 

Attestation requests from Verifier 

Attestation response (collected 

Evidence) - device attestation 

certificate  

IPN 

Device 

Behaviour 

Monitoring 

RabbitMQ (Direct 
Code Integration) 

Devices behaviour events  

ATOS 
Decentralized 

Identifier 
RabbitMQ (Direct 
Code Integration) 

Published Hardened Encryption 

Keys (DIDs) 

MARTEL 
Self-aware Data 

privacy 
API & RabbitMQ Enforcing privacy policies by 

encrypting the (device sensor) data 
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in a database (of a 3PP IoT 
platform) 

UC 
Reputation 

System 
RabbitMQ (Direct 
Code Integration) 

Devices security events – 

correlated with communication 

stage and interpreted via a device 

reputation policy by Reputation 

System 

 

4.2.3.5 Technical solution 

4.2.3.5.1 Deployment architecture view  

While the deployment view of the HE subcomponent for the ABE encryption and xSIM signatures 
has been shown in Figure 60, we report in Figure 60 how the crypto chip system deployment is 
designed in the Domain B.    

 

 

Figure 60 - Grid domain implementation of crypto chip system 

 

 

4.2.3.5.2 Frontend design 

The crypto chip system includes a frontend for the key middleware and key-set up management, 
see Figure 61 and Figure 62. 
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Figure 61 - Crypto chip system - keys set-up (synced with device firmware provisioning) 

 

 

Figure 62 - Crypto chip system - middleware API set-up 

 

4.2.3.5.3 Security aspects 

The main security aspect relevant for the crypto chip system is the requirement to maintain the 
whole content secured end to end, from sensors to IoT platform and vice versa, despite using and 
relaying on 2 different security technologies (symmetrical and asymmetrical; by certificates – for 
TLS, and by dedicated keys – for crypto chip; by assembling a system from 2 different 
components – a firmware running into an MCU, mastering other sub firmwares, and a cloud 
Docker application). 

A stress aspect for this end-to-end architecture is the data integrity, time and completeness 
aspects derived from encryption and decryption process.    

4.2.4 Evaluation and results 

 

In the case of the Hardened Encryption using cryptochip system, there were performed and 

demonstrated (see Figure 55) successfully next trial operations: 

• 180+ hardware tests for the whole series of board types 

• Device firmware provisioning with multiple sensors types  

• Device firmware provisioning with multiple telecommunication types, engaged one by one 

mode – depending which board is plugged in 
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• xSIM provisioning on mobile broad band boards and testing, based on the board pluged 

in and engaged 

• Regular SIM (multiple operators, including 2 MVNO) provisioning on mobile broad band 

boards and testing, based on the board plug in and engaged 

• Failover telecommunication scenarios for dual telecommunication board (ETH and WiFi) 

• Multiple devices provisioned into middleware (ID, user, password, keys for each stage) 

• Multiple devices provisioned with correspondent keys and crypto chip firmware configured 

correspondently 

• Encrypted and unencrypted authorisation scenarios 

• Encryption and decryption authorisation scenarios with wrong key, in both ends (device 

and middleware), one by one and simultaneously 

• Encryption and decryption authorisation scenarios with a valid key, but from different 

stage, in both ends (device and middleware), one by one and simultaneously 

• Encryption and decryption traffic scenarios with wrong key, in both ends (device and 

middleware), one by one and simultaneously 

• Encryption and decryption traffic scenarios with a valid key, but from different stage, in 

both ends (device and middleware), one by one and simultaneously 

• False device attempt into middleware 

• False middleware attempt into device 

• Abnormal device operations (sudden reboot, repetitive reboot, telecommunication carrier 

interruption) 

• Big data traffic stressing the middleware 

 

Figure 63 - IoT stress simulator 

  

 

4.2.5 Future work 

• For crypto chip system, there are three scheduled tasks: (i) device hardware certification 
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(for TRL6 readiness, estimated for end of Q1 2024), (ii) cyber security audit of Hardened 

Encryption System (wholistic and specific penetration tests with a Gov certified entity, 

across all system interfaces and ports, in scope of formalizing the Root of Trust) and (iii) 

maintaining the testing lab up & running with physical prototypes and virtual devices (with 

support of IoT devices simulator) performing repeatedly all encryption stages (registration, 

authentication, traffic), with correct and failed scenarios, to stress the whole system and 

interfaces with the other integrated ones. These results will strengthen the BOX2M 

Engineering position on commercial market and accelerate transition to TRL 9 (estimated 

for Q4 2024).  

 

4.3 Permissioned Blockchain 

4.3.1 Overview 

4.3.1.1 Description 

The Permissioned Blockchain is a common horizontal component in the ARCADIAN-IoT 
framework serving both Horizontal and Vertical Plane components such as Decentralized 
Identifiers and Hardened Encryption, which make use of its immutable auditability and traceability 
properties.  

Given the sensitive nature of data that will be shared in the network, ARCADIAN-IoT the project 
initially requested to use a private Permissioned Blockchain approach for all use cases, but this 
will again be re-evaluated upon deeper analysis of each use case. Permissioned Blockchains 
place restrictions on who is allowed to participate in the network and in what read or write 
transactions. It can have several conditional access features for users to obtain permission to 
operate at given levels.  

In order to interact with the blockchain, software clients typically run their own node, automatically 
updating the common state internally and then notifying the rest of nodes. Importantly the 
Permissioned Blockchain has much higher throughput and aimed more at enterprise solutions 
whereas the public permissionless blockchains are much slower due to their global participation 
and complex consensus proofs. 

 

4.3.1.2 Requirements 

The high-level requirement that has been previously defined and provided in deliverable D2.4 [19] 
has been updated as shown below. 

Requirement 4.2.1 – Provide a Permissioned Blockchain: 

• To provide a Permissioned Blockchain to anchor the trust for Decentralized identifiers. 

• To provide a Permissioned Blockchain to publish information to be shared in a trusted and 
immutable fashion with different actors in the ecosystem, e.g., reputation scores for things, 
persons and services. 

• Users have the right to delete all personal information published on them stored on 
ARCADIAN-IoT components. 

• To be able to support the deletion of personal and device information it is needed to make 
use of off-chain databases that have their trust anchored in the blockchain. 
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4.3.1.3 Objectives and KPIs 

The primary objective is to deploy an open-source Permissioned Blockchain network to support 
the other components in the ARCADIAN-IoT architecture that will benefit from its decentralized 
immutable auditability and traceability properties. The blockchain component will be evaluated 
against the following KPIs in all use case domains: 

KPI scope  

Using the permissioned blockchain to publish trusted information to third parties in the 
ARCADIAN-IoT framework. 

Measurable Indicator 

Number of ARCADIAN-IoT services using permissioned blockchain 
 

Target value  Achieved value  

3 4 

 

KPI scope  

Deployment of permissioned blockchain in IoT environments 

Measurable Indicator 

Number of peer nodes deployed. 
 

Target value  Achieved value  

3 232 

 

KPI scope  

Train partners to deploy a blockchain network 

Measurable Indicator 

Facilitate deployment of blockchain technologies by non-cyber security experts in cyber 
security training sessions with 

Target value Achieved value  

20 38 

 

4.3.2 Technology research 

4.3.2.1 Background 

ATOS does not have any background assets to build upon in providing the Permissioned 
Blockchain to meet the needs of ARCADIAN-IoT. Therefore, only the current State-Of-The-Art in 
Permissioned Blockchain technology is described in this section.  

 

Hyperledger Fabric [20] 

Fabric is an open-source enterprise-grade permissioned Distributed Ledger Technology (DLT) 
platform established under the Linux Foundation and currently has reached a development 
community of over 35 organizations and nearly 200 developers. It is designed for the use in 

 

 

32 It is planned to reach the KPI target for the piloting to be reported in D5.5. 
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enterprise contexts, which delivers some key differentiating capabilities over other popular 
distributed ledger or blockchain platforms, and has a highly modular and configurable 
architecture, enabling innovation, versatility, and optimization for a broad range of industry use 
cases (including banking, finance, insurance, healthcare, human resources, supply chain and 
even digital music delivery). 

It is the first distributed ledger platform to support smart contracts authored in general-purpose 
programming languages such as Java, Go and Node.js, rather than constrained domain-specific 
languages, so organisations benefit from existing competence. 

The platform is also permissioned, meaning that, unlike with a public permissionless network, the 
participants are known to each other, rather than anonymous and therefore fully untrusted. This 
means that while the participants may not fully trust one another (they may, for example, be 
competitors in the same industry), a network can be operated under a governance model that is 
built off of what trust does exist between participants. 

Key features of Hyperledger fabric are described in [29] and listed as follows: 

• Rich queries over an immutable distributed ledger 

• Support permissioned access to on-chain data on a need-to-know basis 

• Support private data collections to protect personal and sensitive data off-chain 

• Modular architecture supporting plug-in components 

• Permissioned Membership Service 

• Performance, scalability, and levels of trust 

• Protection of digital keys and sensitive data. 

 

Hyperledger Besu33 

Besu is an open-source Ethereum client developed under the Apache 2.0 license and written in 
Java. It is designed to run on the Ethereum public network, but can also run on private 
permissioned networks, as well as test networks such as Rinkeby, Ropsten, and Görli. 
Hyperledger Besu supports several proof-of-authority algorithms (including QBFT, IBFT 2.0, and 
Clique) and proof-of-work (Ethash) consensus mechanisms. 

Besu blockchain supports development of enterprise applications in Solidity to deliver secure, 
high-performance transaction processing in a private permissioned network. 

Besu includes a command line interface and JSON-RPC API for running, maintaining, debugging, 
and monitoring nodes in an Ethereum network. You can use the API via RPC over HTTP or via 
WebSockets. The API supports typical Ethereum functionalities such as (i) Ether mining, (ii) Smart 
contract development, and (iii) Decentralized application (dApp) development. 

 

Quorum34 

Quorum provides a private permissioned network based on Ethereum for running smart contracts 
aimed at the banking and finance sector. Quorum strengths are high speed, scalability, and fast 
processing of private transactions. Its high speed is due to its simple consensus mechanisms 
(RAFT, IBFT Clique PoA, QBFT), and because of being an extension of the Ethereum platform; 
thus, most of the updates on Ethereum can be easily integrated in Quorum. 

 

 

33 https://besu.hyperledger.org/  
34 https://github.com/ConsenSys/quorum  

https://besu.hyperledger.org/
https://github.com/ConsenSys/quorum
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Quorum uses Solidity for smart contract developments; according to the DLT platforms 
comparison provided by Alastria,35 Quorum is apparently less community active in recent years 
while there is heavy competition in the Enterprise Ethereum area and platforms such as 
BlockApps and Hyperledger Besu. 

Quorum networks can be used for a wide variety of use cases. In general, it seems to be the norm 
for banking and exchange-based applications, due to the benefits provided in terms of privacy 
brought to running processes, such as payments or post trade settlements. 

 

IOTA Tangle36 

IOTA Tangle is a DLT platform focused on IoT and provides a public permissionless network as 
well as, more recently, a private permissioned capability. IOTA nodes are thin, making possible 
to have an IOTA node running directly on a sensor. IOTA uses a persistence layer called IOTA 
Tangle which is a type of Directed Acyclic Graph with certain minor changes and a rival technology 
to blockchain. Whereas public blockchains rely on miners to select and aggregate the transactions 
with the highest fees into a sequential chain of blocks, the Tangle can process transactions in 
parallel, scaling with growing activity in the network.  

4.3.2.2 Research findings and achievements 

The primary characteristics that blockchain technology facilitates to components of the ACADIAN-
IoT framework are as follows:  

• Decentralized: Blockchain provides a decentralised peer-to-peer network of nodes that 
maintain an immutable record on a fault-tolerant ledger through consensus mechanisms. 
The decentralization means that all peer nodes have a copy of the ledger and access the 
same information so the greater number of nodes in the network the greater the fault 
tolerance. The consensus mechanisms facilitate that there is no central authority providing 
a trust anchor which facilitates the trust in the integrity of the data stored in the distributed 
ledger.  

• Transparent: The decentralized network also means that any participant in the blockchain 
network can perform transactions with any other participant in a transparent manner. The 
transparency is achieved by the fact that all data on the ledger (on-chain) is available to 
all participants who have access to the ledger. 

• Private: Privacy can be maintained by different means for example by providing a 
Permissioned Blockchain and also creating private blockchain subnetworks or channels 
where only those participants have access or by only storing hashes of private data on 
the ledger to be used to later check the integrity of private data stored (off-chain). 

• Immutable: The intrinsic design of the recording blocks of data on the ledger provides for 
an incorruptible storage of data assuring its integrity from that point. This integrity of the 
blockchain also means that all transactions that enter data into the ledger are recorded 
and cannot be removed which has to be taken into consideration for storing of personal 
data due to the GDPR article on the “right to be forgotten.” 

The ARCADIAN-IoT framework will be supported with a blockchain network of at least three peer 
nodes, as per the non-normative example below, with its component elements also described. 

 

 

35 https://alastria-es.medium.com/comparison-of-dlt-platforms-be84950d339d  
36 https://www.iota.org/  

https://alastria-es.medium.com/comparison-of-dlt-platforms-be84950d339d
https://www.iota.org/
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Figure 64 - Example of a blockchain network with three peer nodes. 

The blockchain network shown above is composed of three organisation deployments with the 
different colours representing each deployment. The functions offered by each element are 
described as follows: 

• Smart Contract: This is essentially the backend business logic of a decentralized 
blockchain application running on the peer nodes. A smart contract functions as a trusted 
distributed application that gains its security and trust from the blockchain and the 
underlying consensus among the peers.  

• dApp: This is the decentralized client application that requests the Smart Contract on the 
blockchain peers to carry out a transaction on a business object / asset and publish the 
result to the ledger. 

• Peer: This implements the consensus protocol between the peers in the network for 
reaching consensus in publishing data to the ledger.  

• On-chain Ledger: This is the immutable writing transaction on a ledger based on blocks 
of data protected by crypto proofs on previous block written on the ledger. Data written on 
the on-chain ledger cannot be deleted as deleting any block would violate the trust in the 
ledger.  

• Off-chain Ledger: This is a data store where the integrity of the entries is provided by 
cryptographic hash stored on the blockchain. This is an important function for processing 
personal data and also data that needs to be shared only between a few private actors.  

Note that the peer nodes will be hosted by trusted project partners who participate in the 
publishing of data on the blockchain.  

The combination of blockchain characteristics, previously described, makes the blockchain useful 
for applications that would benefit from a decentralized trust model. Within ARCADIAN-IoT the 
primary use of the blockchain is to allow some trusted actors to write on the blockchain so as to 
publish data that is made available to its participants and shared with third parties which can then 
verify the integrity of the data against the blockchain. It is important to highlight that no personal 
data shall be stored on-chain. 

The blockchain was primarily envisioned to support the publishing of trusted data objects for the 
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following components of the ARCADIAN-IoT framework: (i) Decentralized Identifiers, (ii) 
Reputation System, and (iii) Hardened Encryption. It was later, added on in the final prototype the 
support for establishing a trusted register of Service Providers. 

Since the data published on a blockchain is intrinsically dynamic and may also include personal 
information, it is normal practice that business objects/assets that need to be published should 
be stored off-chain while a crypto hash of the asset is instead stored on-chain. 

Although a private Permissioned Blockchain might be preferred in some use cases, Decentralised 
Identifier methods for public entities (e.g., public persons, services, and things) are commonly 
deployed in publicly available blockchains. For this reason, ARCADIAN-IoT will deploy a 
Permissioned Blockchain network where only some participants will be able to write on it, but all 
members can read it; that is, both private and public Permissioned Blockchain networks with 
mechanisms of access control (stating which entities have restricted access) will be supported. 

 

DLT Selection for ARCADIAN-IoT 

The evaluation approach in deciding which DLT to employ in the ARCADIAN-IoT framework, 
based on the State-of-the-Art analysed in section 4.3.2.1, considered the following aspects: 

• The support to different use cases (specifically ARCADIAN-IoT use cases and 
requirements) 

• The running efficiency and optimal use of resources 

• The ability to develop in commonly used development languages 

• The open-source developer community 

• The provided support documents and tutorials 

• The off-the-shelf support of private data that needs to be kept off chain. 

Upon analysis of the open source permissioned blockchains, and the identified use cases for its 
application, it was decided in the first instance to support ARCADIAN-IoT with Hyperledger Fabric. 
Hyperledger Fabric comes out very strong in all of the above mentioned aspects and in particular 
an efficient use of resources is achieved as most of the data can be stored off-chain, making use 
of its Private Data Collections while being notarized with on-chain hashes; also greater throughput 
and scalability are general characteristics of Permissioned Blockchains aimed at enterprise 
applications, due to only a few authorised organisations allowed to write to the blockchain, leading 
to more efficient consensus algorithms. Note that the methodology that can be used to evaluate 
Hyperledger Fabric smart contract transactions with benchmark figures is available on 
Hyperledger’s GitHub.37 

This selection process ensured that the best state-of-the-art permissioned blockchain platform for 
the needs of ARCADIAN-IoT was used for the development of smart contracts delivered in this 
component. 

4.3.2.3 Produced resources 

The primary resource of the ARCADIAN-IoT Permissioned Blockchain component is a smart 
contract publishing ARCADIAN-IoT data objects on top of a deployed Hyperledger Fabric 
network. 

 

 

37 https://hyperledger.github.io/caliper-benchmarks/fabric/performance/  

https://hyperledger.github.io/caliper-benchmarks/fabric/performance/
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4.3.3 Design specification 

4.3.3.1 Sub-use cases 

4.3.3.1.1 Publish ARCADIAN-IoT Data to Permissioned Blockchain 

The use case below shows the ARCADIAN-IoT Systems of Reputation and Hardened Encryption 
publishing data objects to the Permissioned Blockchain. It is seen that only hashes of the 
ARCADIAN-IoT object are stored on-chain. 

 

Figure 65 - Publish ARCADIAN-IoT Data to Permissioned Blockchain 

  

It is noted that the component service publishing the data must be authenticated and authorised.  

The organisation that carries out the publish transaction on-behalf of the component services 
must also have the correct permissions on the blockchain network.  

 

4.3.3.1.2 Read Published ARCADIAN-IoT Data Objects 

In this use case the previously published ARCADIAN-IoT Data is able to be read by the 
components systems that published the data. The retrieved data objects are validated against 
their on-chain hashes to make sure they have not been tampered with. 

 

Figure 66 - Read published ARCADIAN-IoT Data Objects 
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It is noted that the component service reading the published data must be authenticated and 
authorised.  

The organisation that carries out transaction on-behalf of the component services to read 
published data must also have the correct permissions on the blockchain network. 

4.3.3.2 Logical architecture view 

4.3.3.2.1 Publish ARCADIAN-IoT Data Objects  

The logical view of the Permissioned Blockchain node for publishing ARCADIAN-IoT Objects and 
Decentralized Identifiers from registered ARCADIAN-IoT components is shown below. The blank 
component is included to show that the architecture is extensible to support publishing of any 
data object from any ARCADIAN-IoT component. 

 

Figure 67 - Logical architecture for publishing ARCADIAN-IoT Objects to the Permissioned Blockchain 

 

API Interface: This provides an interface for the trusted organizations with permission to write to 
the blockchain to publish data to the appropriate off-chain private data collections and associated 
on-chain hashes.  

Node: The peer node runs the smart contract that is responsible for performing transactions to 
the on-chain and off-chain ledgers residing on the node as well as configuration and running of 
the consensus algorithm that controls the commits to the ledger. 

4.3.3.3 Interface description 

4.3.3.3.1 Publish ARCADIAN-IoT Data Objects  
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Figure 68 - Publish ARCADIAN-IoT Data Objects Interface Description 

 

4.3.3.3.2 Publish DID transactions 

The Decentralized Identifier component in deliverable D4.3 provides a smart contract [29] to 
provide the DID transactions carrying out CRUD operations. 

4.3.3.4 Technical solution 

4.3.3.4.1 Deployment architecture view 

 

4.3.3.4.2 Publishing ARCADIAN-IoT Data deployment view 

The Permissioned Blockchain deployment architecture is based on Hyperledger Fabric 2.5 and 
three Peer Nodes will be deployed for supporting the publishing of ARCADIAN-IoT Data Objects 
and DIDs, as shown in the figure below.  

There is one API Interface per ARCADIAN-IoT organisation that deploys a peer node with read / 
write permissions to the blockchain, as per the Membership Service Provider provided by 
Hyperledger Fabric based on X.509 certificates. 

 

Figure 69 - Permissioned Blockchain for Publishing ARCADIAN-IoT Data deployment view 
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4.3.3.4.3 Publishing Sidetree transactions deployment view 

Please refer to deliverable D4.3 - Vertical Planes [29] for the overall deployment view of the 
blockchain network supporting the Sidetree node. 

4.3.3.4.4 API specification 

The OpenAPI YAML specification is published on the ARCADIAN-IoT GitLab repository38.  

 

4.3.3.4.5 Publishing ARCADIAN-IoT Data Smart Contract design 

Overview 

The Smart Contract is designed to publish data objects in an opaque manner for ARCADIAN-IoT 
Identities for a type of object e.g. Reputation object, Attribute Based Encryption Key object. 

The published data objects can be consumed by any component in the ARCADIAN-IoT 
Framework, and also any external organisation configured on the Blockchain Network channel. 

Essentially, the permissioned blockchain provides ARCADIAN-IoT with a distributed and fault-
tolerant trusted database for use by multiple instances of the ARCADIAN-IoT Framework and 
also with external parties such as Attribute Based Encryption Key Providers, external services 
and auditors etc. 

All published data objects are published to an off-chain database and only the hashes of the 
published data are stored on-chain so to provide immutable integrity of the published data. 

Channel´s Private Data Collections are able to be validated against the hash stored on the 
channels on-chain world state. Any private data can be deleted at any time as well as to be 
completely purged from transaction logs [17], only the hashed data on-chain will remain.  

Channels 

The organisations allowed to access the on-chain and off-chain world states of the blockchain are 
primarily controlled by being configured to a channel. In this way there will be multiple channels 
established in ARCADIAN-IoT deployment per business data object that will be published in that 
channel e.g. a Reputation Channel, ABE Key Channel.  

 

Private Data Collections 

Private Data Collections39 will be used to publish data off-chain in a deterministic manner on a 
Hyperledger Fabric blockchain network40, and each business object will have its own private data 
collection e.g. reputation collection. 

The accesses to Private Data Collections are controlled by: 

- The member organisations who were given permission to take part in that 
blockchain channel41 

- A collection definition42 JSON file to control member access in the channel to the 
collection 

Private Data Collections only store the hash of their transaction on chain, so the state & all 
previous transactions can be checked against on-chain hash records. 

 

 

38 https://gitlab.com/arcadian_iot/blockchain/-/blob/main/interface/openapiPB.yml 

39 Private Data Collections  
40 Hyperledger Fabric blockchain network 
41 blockchain channel 
42 collection definition JSON  

https://gitlab.com/arcadian_iot/blockchain/-/blob/main/interface/openapiPB.yml
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private_data_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private_data_tutorial.html
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CouchDB is identified for deployment as the database as can be extended in the future so that 
more complex SQL type relational DB queries can be defined using indexes43. 

 

Data Model 

For publishing Reputation data an off-chain Private Data Collection specific to the type of 
Reputation data object to be published is created, as follows: 

 

 

Figure 70 - Reputation Private Data Collection 

 

For publishing Hardened Encryption data then this follows the same approach to create an off-
chain Private Data Collection specific to the type of encryption key data object to be published. 
For example, the Attribute Based Encryption Key object will implement the following Private Data 
Collection: 

 

Figure 71 - ABE Key Private Data Collection 

 

ARCADIAN-IoT supports publishing trusted organization´s in the permissioned blockchain so that 
only trusted organizations can interact within the ARCADIAN-IoT ecosystem. The Private Data 
Collection is defined as follows with the index key being the Organization´s public DID: 

 

 

43 https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html  

https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html
https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html
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Figure 72 - Organization Private Data Collection 

 

ARCADIAN-IoT supports publishing Decentralized Identifiers (for use inside the ARCADIAN-IoT 
ecosystem) on the permissioned blockchain, so that only authorized organizations can publish 
and later control these DIDs. The Private Data Collection is defined as follows: 

 

Figure 73 - Decentralized identifier Private Data Collection 

 

Chaincode 

The smart contract is deployed on peer nodes as chaincode and include the private collections 

definition file. The peer lifecycle chaincode subcommand allows administrators to use the Fabric 
chaincode lifecycle to package a chaincode, install it on your peers, approve a chaincode definition 
for your organization, and then commit the definition to a channel [15]. 

 

Transactions 

To publish data to the off-chain Private Data Collection the Hyperledger Fabric Contract API is 
called as follows: 

 

PutPrivateData(collection string, key string, value []byte) 

 

The API calls from the Smart Contract GW Interface for Posting and updating a collections 
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business data object will result in this PutPrivateData transaction.  

 

To read data from the off-chain Private Data Collection the following Hyperledger Fabric Contract 
API is called: 

 

GetPrivateData(collection string, key string) ([]byte, error) 

 

 

The API call from the Smart Contract GW Interface to get a collection´s business data object will 
result in this GetPrivateData transaction.  

 

To delete data from the off-chain Private Data Collection the following Hyperledger Fabric 
Contract API is called: 

 

PurgePrivateData(collection string, key string) 

 

 

The API call from the Smart Contract GW Interface to delete a collection´s business data object 
will result in this PurgePrivateData transaction. The transaction APIs are fully specified in 
Hyperledger Fabric [16].  

 

Implementation Notes 

The Smart Contract is written in JavaScript. 

It is seen from the above transactions, that the data being committed to the Private Data Collection 
(key value pair) is a string stored as an array of bytes and the value actually being stored is a 
stringified JSON object. However, JSON is not a deterministic data format i.e. the order of 
elements can change, whilst still representing the same data semantically. The challenge, 
therefore, is to be able to generate a consistent set of JSON. 

As the Smart Contract is written in Javascript, then to achieve consistent results, a deterministic 
version of JSON.stringify() is needed rather than the function JSON.stringify() which is commonly 
used when serialising a JSON object. In this way it is possible to get a consistent hash from 
stringified results. json-stringify-deterministic is the recommended library to do so and can also 
be used combined with sort-keys-recursive to attain alphabetic order too [18].   

 

4.3.3.4.6 Security aspects 

Only registered ARCADIAN-IoT component services will be able to request to create data object 
transactions to the smart contracts.  

Any registered component or registered external party should be able to read it. 

4.3.4 Evaluation and results 

The smart contract implementation has been deployed on a Hyperledger Fabric test network in 
the pre-production environment and was tested with dummy data that the data objects were 
correctly published to the blockchain. It was subsequently made available to the piloting partner 
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systems. 

Ultimately, the evaluation of the Permissioned Blockchain in ARCADIAN-IoT framework and the 
smart contract(s) that are developed for its use will be obtained by the evaluation of the 
components that use it during piloting. 

 

4.3.5 Future work 

Based on the results of this project, Atos will consider incorporating the blockchain component as 
a Verifiable Data Registry into its identity portfolio, for supporting use cases with public 
Decentralized Identifiers.  
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5 CONCLUSIONS 

The partners involved in producing this WP3 deliverable are IPN, ATOS, MAR, RISE, BOX2M, 
UWS, XLAB, and 1GLOBAL. The deliverable itself consists of this final report on the components 
in the Horizontal Planes of the ARCADIAN-IoT framework as well as the developed software for 
deployment in the piloting domains in WP5. 

In summary, the ARCADIAN-IoT Horizontal components researched and developed as part of 
this deliverable are as follows:  

• Self-aware Data Privacy 

• Federated AI 

• Network Flow Monitoring 

• Behaviour Monitoring 

• Cyber Threat Intelligence 

• Network Self-protection 

• IoT Device Self-protection 

• Network Self-healing 

• Hardened Encryption (SIM as RoT & Crytochip as RoT options) 

• Permissioned Blockchain 

This final iterative version of the deliverable (based on deliverable D3.2) reflects the Horizontal 
plan features enabled in the final P2 prototype, where the partners concluded the technological 
research of each component and updated their design for added features and improvements.  

The description of the component prototypes and results achieved in this deliverable are input for 
the use cases in WP5 to finalise their domain integrations and piloting for the P2 prototype 
features.  
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